每日导数84
类二次函数与隐零点
已知函数\(f(x)=x(x-3)+(x+2)e^x\)
(1)求\(f(x)\)的最小值
(2)若\(g(x)=f(x)+x\left(3-\dfrac{3}{2}x\right)+\ln x+e^x(x^2-3x-1)\),求\(g(x)\)的零点个数
解
(1)\(f^{\prime}(x)=2x+e^x(x+3)-3\)单调递增,同时\(f^{\prime}(0)=0\)
则\(x=0\)是\(f^{\prime}(x)\)唯一的零点并且是\(f(x)\)的最小值点,\(f(x)_{\min}=f(1)=3e-2\)
(2)\(g(x)=-\dfrac{1}{2}x^2+e^x(x-1)^2+\ln x,g^{\prime}(x)=-x+e^x(x^2-1)+\dfrac{1}{x}\)
分析:\(x\to 0,g(x)\to-\infty,x\to +\infty,g(x)=+\infty,x\to 0,g(1)=-\dfrac{1}{2}<0,g^{\prime}(x)\to+\infty,x\to +\infty,g^{\prime}(x)\to +\infty,g^{\prime}(1)=0\),按照这些分析大概试作出草图,发现很大概率就是一个零点,并且这个零点大于1
\(g^{\prime}(x)=\dfrac{(1-x)(1+x)}{x}+e^x(x^2-1)=\dfrac{(x^2-1)(xe^x-1)}{x}=\dfrac{(x-1)(x+1)(xe^x-1)}{x}\)
考虑\(\gamma(x)=xe^x-1,\gamma^{\prime}(x)=e^x(x+1)>0\)
则\(\gamma(x)\)单调递增,\(\gamma\left(\dfrac{1}{2}\right)=\dfrac{\sqrt{e}}{2}-1<0,\gamma(1)=e-1>0\)
则得\(\gamma(x)\)有唯一的零点\(x_0\in\left(\dfrac{1}{2},1\right)\)
进而得到\(g^{\prime}(x)\)在\((0,x_0)\)和\((1,+\infty)\)上正,在\((x_0,1)\)上负
进而\(g(x)\)在\((0,x_0)\)和\((1,+\infty)\)上增,在\((x_0,1)\)上减
计算
\(g(x_0)=-\dfrac{1}{2}x_0^2+e^{x_0}(x_0-1)^2+\ln x_0\)
\(=-\dfrac{1}{2}x_0^2+\dfrac{1}{x_0}\left(x_0^2-2x_0+1\right)-x_0\)
\(=-\dfrac{1}{2}x_0^2+\dfrac{1}{x_0}-2\)
\(=-\dfrac{1}{2}\left(x_0^2-\dfrac{2}{x_0}+4\right)\)
\(<-\dfrac{1}{2}\left(1-2+4\right)\)
\(=-\dfrac{1}{2}\)
\(<0\)
因\(g(1)<0\),在\(x>1\)上,\(g(e)=-\dfrac{1}{2}e^2+e^e(e-1)^2+1>0\)
则由零点存在定理,\(g(x)\)在\((1,+\infty)\)存在至少一个零点
因\(g(x)\)在\((1,+\infty)\)上单调递增
则此零点是唯一的
综上\(g(x)\)只有一个零点.

浙公网安备 33010602011771号