每日导数81

简单的同构

已知函数\(f(x)=(2-a-ax)e^x\)

(1)求\(f(x)\)的单调区间

(2)若\(a=1\),证明:\(f(x)+e^x\ln(x+1)\leq x+1\)


(1)\(f^{\prime}(x)=(2-ax-2a)e^x\)

Case1 当\(a=0\)时,\(f(x)\)单调递增

Case2 当\(a<0\)时,\(f^{\prime}(x)=0\)\(x_0=\dfrac{2-2a}{a}=\dfrac{2}{a}-2\)

\(f(x)\)\(\left(-\infty,\dfrac{2}{a}-2\right)\)上单调递增,在\(\left(\dfrac{2}{a}-2,+\infty\right)\)上单调递减

Case3 当\(a>0\)时,同上

\(f(x)\)\(\left(-\infty,\dfrac{2}{a}-2\right)\)上单调递减少,在\(\left(\dfrac{2}{a}-2,+\infty\right)\)上单调递增

(2)当\(a=1\)\(f(x)=(1-x)e^x\),原不等式转为

\((1-x)e^x+e^x\ln (x+1)\leq x+1\)

\(e^x\left[1-x+\ln(x+1)\right]\leq x+1\)

\(1-x+\ln(x+1)\leq (x+1)e^{-x}\)

\(1+\ln(x+1)-\ln e^x\leq (x+1)e^{-x}\)

\(1+\ln e^{-x}(x+1)\leq (x+1)e^{-x}\)

\(e^{-x}(x+1)=t,t\in(0,1]\)

即证:\(1+\ln t\leq t\)

这是经典放缩,证明略

得证!

posted @ 2024-03-11 08:16  会飞的鱼13  阅读(14)  评论(0)    收藏  举报