每日导数81
简单的同构
已知函数\(f(x)=(2-a-ax)e^x\)
(1)求\(f(x)\)的单调区间
(2)若\(a=1\),证明:\(f(x)+e^x\ln(x+1)\leq x+1\)
解
(1)\(f^{\prime}(x)=(2-ax-2a)e^x\)
Case1 当\(a=0\)时,\(f(x)\)单调递增
Case2 当\(a<0\)时,\(f^{\prime}(x)=0\)得\(x_0=\dfrac{2-2a}{a}=\dfrac{2}{a}-2\)
则\(f(x)\)在\(\left(-\infty,\dfrac{2}{a}-2\right)\)上单调递增,在\(\left(\dfrac{2}{a}-2,+\infty\right)\)上单调递减
Case3 当\(a>0\)时,同上
则\(f(x)\)在\(\left(-\infty,\dfrac{2}{a}-2\right)\)上单调递减少,在\(\left(\dfrac{2}{a}-2,+\infty\right)\)上单调递增
(2)当\(a=1\),\(f(x)=(1-x)e^x\),原不等式转为
\((1-x)e^x+e^x\ln (x+1)\leq x+1\)
即\(e^x\left[1-x+\ln(x+1)\right]\leq x+1\)
即\(1-x+\ln(x+1)\leq (x+1)e^{-x}\)
即\(1+\ln(x+1)-\ln e^x\leq (x+1)e^{-x}\)
即\(1+\ln e^{-x}(x+1)\leq (x+1)e^{-x}\)
记\(e^{-x}(x+1)=t,t\in(0,1]\)
即证:\(1+\ln t\leq t\)
这是经典放缩,证明略
得证!

浙公网安备 33010602011771号