每日导数75

隐零点的多次转化

已知函数\(f(x)=e^x-a\ln(x+1)\)

(1)若\(f(x)\)的最值为\(a\),求\(a\)

(2)当\(a=\dfrac{1}{e^n}(n\in\mathbb{N})\)时,证明:\(f(x)\geq (n+1)a\)


(1) 由费马定理,连续函数在开区间内取最值,一定是导函数为\(0\)的点

\(f^{\prime}(x)=e^x-\dfrac{a}{x+1}=0\),设其零点为\(x_0\),则

\(a=e^{x_0}(x_0+1)\),此时\(f(x)\)的最值为

\(f(x_0)=e^{x_0}-e^{x_0}(x_0+1)\ln(x_0+1)=a=e^{x_0}(x_0+1)\)

\(x_0+(x_0+1)\ln(x_0+1)=0\)

\(h(x)=x_0+(x_0+1)\ln(x_0+1)\)\(h^{\prime}(x)=-\ln(1+x)\)

\(\dfrac{x}{x+1}+\ln(x+1)=0\)

\(\ln(x+1)-\dfrac{1}{x+1}+1=0\),单调递增

从而只有一个零点\(x_0=0\)

\(a=1\)

(2)

由(1)\(f(x)\)有最小值\(f(x_0)=e^{x_0}-a\ln(x_0+1)\)

\(a=e^{x_0}(x_0+1)\),即\(e^{x_0}=\dfrac{a}{x_0+1}\)

\(a=\dfrac{1}{e^n}\),即\(e^{-n-x_0}=(x_0+1)\),即\(n+x_0=-\ln(x_0+1)\)

\(f(x_0)=\dfrac{a}{x_0+1}+a(n+x_0)=\dfrac{a}{x_0+1}+a(x_0+1)+a(n-1)\)

从而\(f(x_0)\geq 2a+a(n-1)=a(n+1)\)

posted @ 2024-03-05 08:05  会飞的鱼13  阅读(21)  评论(0)    收藏  举报