每日导数71

越丑的结构,就想到同构

已知函数\(f(x)=ke^x+(\ln x)^2-x\),若\(f(x)\geq (x+\ln k)^2\),恒成立,求\(k\)取值范围


原不等式为\(ke^x+(\ln x)^2-x\geq(x+\ln k)^2\)

\(e^{\ln k+x}-(x+\ln k)^2\geq x-(\ln x)^2\)

\(e^{\ln k+x}-(x+\ln k)^2\geq e^{\ln x}-(\ln x)^2\)

即考虑\(g(x)=e^x-x^2\)

\(g^{\prime}(x)=e^x-2x\geq ex-2x=(e-2)x>0\)

从而\(g(x)\)单调递增

\(g(\ln k+x)\geq g(\ln x)\)

\(\ln k+x\geq \ln x\)

\(\ln k\geq \ln x-x\)恒成立

\(\varphi(x)=\ln x-x,\varphi^{\prime}(x)=\dfrac{1}{x}-1\)

\(\varphi(x)_{\max}=\varphi(1)=-1\)

从而\(\ln k\geq -1\)

\(k\geq e^{-1}\)

posted @ 2024-02-28 14:48  会飞的鱼13  阅读(8)  评论(0)    收藏  举报