每日导数68
切线放缩
已知函数\(f(x)=\dfrac{1}{2}x^2+(a-m-1)x-ax\ln x\)
(1)若\(m=-1\)时,\(y=f(x)\)不是单调函数,求\(a\)范围
(2)若\(a=2,m<0\)时,\(f(x)\)存在两个极值点\(x_1,x_2(x_1<x_2)\),证明:\(x_2-x_1<3(m+1)\)
解
(1)\(f(x)=\dfrac{1}{2}x^2+ax-ax\ln x,f^{\prime}(x)=x-a\ln x=a\left(\dfrac{x}{a}-\ln x\right)\)
因\(\dfrac{x}{e}\geq \ln x\),从而
当\(a>e\)合题,\(a<0\)合题,\(a=0\)不合
(2)\(f(x)=\dfrac{1}{2}x^2+(1-m)x-2x\ln x,f^{\prime}(x)=x-2\ln x-m-1=0\)
即\(x-2\ln x-1=m\)
记\(g(x)=x-2\ln x-1,y=m\)(因为发现这样分离后\(g(1)=0\),很特殊)
变成了\(y=g(x),y=m\)有两个交点
不难得到\(g(x)\)在\((0,2)\)减,\((2,+\infty)\)上增
又因\(m<0\),从而得到\(1<x_1<2<x_2\)
因\(g(1)=0\),设在\(x>2\)上另外一个零点为\(x_0\)即\(g(x_0)=0\)
因\(g(3)=2-2\ln 3<0,g(4)=3-4\ln 2>0\),从而\(x_0\in(3,4)\)
\(g(x)\)在\(x=1\)上的切线\(l_1:y=1-x\),在\(x=x_0\)上切线:\(l_2=y=\left(1-\dfrac{2}{x_0}\right)(x-x_0)\)
设\(l_1,l_2\)与\(y=m\)的交点为\(x_1^{'},x_2^{''}\)
从而\(x_1^{'}=\dfrac{mx_0}{x_0-2}+x_0,x_2^{'}=1-m\)
则\(x_2-x_1<x_2^{'}-x_1^{'}=\dfrac{mx_0}{x_0-2}+x_0-(1-m)=\dfrac{m(x_0-2)+2m}{x_0-2}+x_0+m-1\)
\(=\dfrac{2m}{x_0-2}+x_0+2m-1=\dfrac{2m}{x_0-2}+x_0-2+2m+1\)
\(<\dfrac{2m}{2}+2+2m+1=3(m+1)\)

浙公网安备 33010602011771号