每日导数63
高考题还是质量高,观察式子进行选值放缩
已知函数\(f(x)=xe^{ax}-e^x\)
(1)当\(x>0\)时,\(f(x)<-1\),求\(a\)取值范围
(2)证明:\(\dfrac{1}{\sqrt{1^2+1}}+\dfrac{1}{\sqrt{2^2+2}}+\cdots+\dfrac{1}{\sqrt{n^2+n}}>\ln(n+1)\)
解
(1) \(f^{\prime}(x)=e^{ax}(1+ax)-e^x,f(0)=-1,f^{\prime}(0)=0\)
\(f^{\prime\prime}(x)=e^{ax}(2a+a^2x)-e^x,f^{\prime\prime}(0)=2a-1\)
现在说明\(a\leq \dfrac{1}{2}\)合题,\(a>\dfrac{1}{2}\)不合题
当\(a>\dfrac{1}{2}\)时,\(f^{\prime\prime}(0)=2a-1>0\)
则由保号性,一定存在\((0,x_0)\)上,\(f^{\prime\prime}(x)>0\)
从而在\(x\in\left(0,x_0\right)\)上,\(f^{\prime}(x)\)单调递增,则\(f^{\prime}(x)>f^{\prime}(0)=0\)
则\(f(x)>f(0)=-1\)不合题
当\(a\leq\dfrac{1}{2}\)时,考虑换主元
\(\varphi(a)=xe^{ax}-e^x\leq xe^{\frac{x}{2}}-e^x\)
记\(h(x)=xe^{\frac{x}{2}}-e^x,h^{\prime}(x)=e^{\frac{x}{2}}\left(1+\dfrac{x}{2}-e^{\frac{x}{2}}\right)\leq 0\)
则\(h(x)< h(0)=-1\)
从而\(f(x)=\varphi(a)\leq h(x)< h(0)=-1\)
综上\(a\leq \dfrac{1}{2}\)
(2)取\(a=\dfrac{1}{2}\),则\(xe^{\frac{x}{2}}-e^x<-1\)
则取\(e^{\frac{x}{2}}=m\),即有
\(\ln m<\dfrac{1}{2}\left(m-\dfrac{1}{m}\right),m>1\)(常见的放缩,没有题给也应该想到)
再观察式子:\(\dfrac{1}{\sqrt{n^2+n}}=\dfrac{\sqrt{n^2+n}}{n^2+n}=\dfrac{\sqrt{n^2+n}}{n(n+1)}=\dfrac{\sqrt{n^2+n}}{n}-\dfrac{\sqrt{n^2+n}}{n+1}=\sqrt{\dfrac{n+1}{n}}-\sqrt{\dfrac{n}{n+1}}\)
从而带入\(\sqrt{\dfrac{k+1}{k}}\)进不等式有
\(\ln\sqrt{\dfrac{k+1}{k}}<\dfrac{1}{2}\left(\sqrt{\dfrac{k+1}{k}}-\sqrt{\dfrac{k}{k+1}}\right)\)
即\(\ln\dfrac{k+1}{k}<\sqrt{\dfrac{k+1}{k}}-\sqrt{\dfrac{k}{k+1}}\)
即\(\ln(k+1)-\ln k<\sqrt{\dfrac{k+1}{k}}-\sqrt{\dfrac{k}{k+1}}=\dfrac{1}{\sqrt{k^2+k}}\)
取\(k=1,2,3\cdots ,n\)累加有
\(\ln(n+1)<\dfrac{1}{\sqrt{1^2+1}}+\dfrac{1}{\sqrt{2^2+2}}+\cdots+\dfrac{1}{\sqrt{n^2+n}}\)

浙公网安备 33010602011771号