每日导数58
常见的处理技巧与端点效应
已知函数\(f(x)=(x-1)\ln(x-2)-a(x-3)\),若当\(x>3\),\(f(x)>0\)恒成立,求\(a\)范围
解
\((x-1)\ln(x-2)-a(x-3)>0\)
即\(\ln(x-2)-a\dfrac{x-3}{x-1}>0\)
记\(g(x)=\ln(x-2)-a\dfrac{x-1-2}{x-1}=\ln(x-2)+\dfrac{2a}{x-1}-a,g^{\prime}(3)=0\)
\(g^{\prime}(x)=\dfrac{1}{x-2}-\dfrac{2a}{(x-1)^2}\)单调递增,\(g^{\prime}(3)=1-\dfrac{a}{2}\)
Case1 当\(a\leq 2\)时,\(g^{\prime}(x)\geq 0\),则\(g(x)\)单调增
\(g(x)\geq g(3)=0\)
Case2 当\(a>2\)时,\(g^{\prime}(3)<0\),因\(g^{\prime}(x)\)单调增
并且\(g^{\prime}(x)=\dfrac{x^2-2(a+1)x+2a+1}{(x-1)^2(x-2)}\)
则一定存在\(x_0>3\),使得\(g^{\prime}(x_0)=0\)
从而在\((3,x_0)\)上,\(g^{\prime}(x)<0\)
则\(g(x)<g(3)=0\),不合题
综上\(a\leq 2\)

浙公网安备 33010602011771号