每日导数54

参变分离,切线放缩

已知函数\(f(x)=e^x-x-1\)

(1)讨论\(f(x)\)的单调性

(2)当\(x\geq 0,\)\(f(2x)\geq 4x^3-ax^2\),求\(a\)的取值范围

(1)略

(2)\(e^{2x}-2x-1\geq 4x^3-ax^2\)

\(x=0\),合题

\(x\neq 0\)\(a\geq -\dfrac{e^{2x}-4x^3-2x-1}{x^2}\)

\(g(x)=-\dfrac{e^{2x}-4x^3-2x-1}{x^2}\)

\(g^{\prime}(x)=-\dfrac{2(x-1)(e^{2x}-2x^2-2x-1)}{x^3}\)

\(e^x\geq 1+x+\dfrac{x^2}{2}\)

\(e^{2x}\geq 1+2x+2x\)

从而\(e^{2x}-2x^2-2x-1\geq 0\)

则不难得到\(g^{\prime}(x)\)\((0,1)\)上正,在\((1,+\infty)\)上负

从而\(g(x)_{\max}=g(1)=7-e^2\)

\(a\geq 7-e^2\)

posted @ 2024-02-08 08:11  会飞的鱼13  阅读(13)  评论(0)    收藏  举报