每日导数52
非常好的一道界值分析,数学分析浓郁的综合性题
已知函数\(f(x)=e^{1-x}-ax\ln x,a>\dfrac{1}{4}\)
(1)若\(f(x)\leq 3-2x\),求\(a\)
(2)证明:\(f(x)\leq 1-(a+1)\ln x\)
(3)证明:\(f(m)+f\left(\dfrac{1}{n}\right)+f\left(\dfrac{n}{m}\right)\leq 3\)
解
(1) \(e^{1-x}-ax\ln x\leq 3-2x\)
即\(e^{1-x}-ax\ln x+2x-3\leq 0\)
即\(x\left(\dfrac{e^{1-x}}{x}-a\ln x-\dfrac{3}{x}+2\right)\leq 0\)
记\(h(x)=\dfrac{e^{1-x}}{x}-a\ln x-\dfrac{3}{x}+2\)
因\(h(1)=0\)
\(h^{\prime}(x)=\dfrac{-xe^{1-x}-e^{1-x}}{x^2}-\dfrac{a}{x}+\dfrac{3}{x^2}=\dfrac{-e^{1-x}(x+1)-ax+3}{x^2}\)
记\(\varphi(x)=-e^{1-x}(x+1)-ax+3\)
则\(\varphi(1)=1-a\)
现说明\(a>1\)不合题,\(a<1\)也不合题,只有\(a=1\)合题
Case1当\(a>1\)时,\(\varphi(1)<0\)
\(\varphi^{\prime}(x)=e^{1-x}(x+1)-e^{1-x}-a=xe^{1-x}-a\)
因\(\left(xe^{1-x}\right)^{\prime}=e^{1-x}(1-x)\),则\(xe^{1-x}<1\)
并且\(xe^{1-x}\)在\((0,1)\)上单调增
从而\(\varphi^{\prime}(x)<0\),则\(\varphi(x)\)单调递减
因\(\varphi(1)=1-a<0\),则一定存在区间\((x_0,1)\)上\(\varphi(x)<0\)(因为\(\varphi(x)\)是光滑连续的)
从而\(h(x)\)在\(x\in(x_0,1)\)上单调递减
从而\(h(x)>h(1)=0\),不合题
Case2 当\(a<1\)时,\(\varphi(1)>0\)
\(\varphi(x)=-e^{1-x}(x+1)-ax+3\),\(\varphi^{\prime}(x)=e^{1-x}(x+1)-e^{1-x}-a=xe^{1-x}-a\)
\(\varphi^{\prime}(1)=1-a>0\)
而因\(xe^{1-x}<1\),并且在\(x>1\)上单调递减
从而一定存在\((1,x_1)\),使得\(\varphi^{\prime}(x)>0\)
\(\varphi(x)\)在\((1,x_1)\)上单调增,则\(\varphi(x)>\varphi(1)=1-a>0\)
从而\(h(x)>h(1)=0\),不合题
Case3 当\(a=1\)时,\(\varphi^{\prime}(x)\leq 0\)
则\(\varphi(x)\)单调递减,因\(\varphi(1)=0\)
则\(h(x)\)在\((0,1)\)增,在\((1,+\infty)\)上减
从而\(h(x)\leq h(1)=0\)
综上,\(a=1\)
(2)令\(g(x)=e^{1-x}-ax\ln x- 1+(a+1)\ln x,g(1)=0\)
\(g^{\prime}(x)=-e^{1-x}-a\ln x-a+\dfrac{a+1}{x},g^{\prime}(1)=0\)
\(g^{\prime\prime}(x)=e^{1-x}-\dfrac{a}{x}-\dfrac{a+1}{x^2}=\dfrac{x^2e^{1-x}-ax-a-1}{x^2}\)
记\(\mu(x)=x^2e^{1-x}-ax-a-1\)
因\((x^2e^{1-x})^{\prime}=xe^{1-x}(-x+2)\)
则\(x^2e^{1-x}-1\leq \dfrac{4}{e}-1,x>0\)
而在\(x\in(0,1),x^2e^{1-x}-1<0\),从而\(\mu(x)<0\)
则\(g^{\prime}(x)>g^{\prime}(1)=0\)
则\(g(x)\)在\((0,1)\)上增
当\(x>1\)时,\(x^2e^{1-x}-ax-a-1<\dfrac{4}{e}-\dfrac{1}{4}-\dfrac{1}{4}-1<0\)
从而\(x>1,g^{\prime}(x)\)单调递减,即\(g^{\prime}(x)<g^{\prime}(1)=0\)
从而\(g(x)\)在\((1,+\infty)\)上单调递减
综上\(g(x)\leq g(1)=0\)
得证!
(3)由(2) \(f(x)\leq 1-(a+1)\ln x\)
则\(f(m)+f\left(\dfrac{1}{n}\right)+f\left(\dfrac{n}{m}\right)\leq 3-(a+1)\ln \left(m\cdot\dfrac{1}{n}\cdot\dfrac{n}{m}\right)=3\)

浙公网安备 33010602011771号