每日导数51

利用极限找点

定义函数满足\(f(x_0)=f^{\prime}(x_0)\)的实数\(x_0\)为函数\(y=f(x)\)的然点,已知\(f(x)=(\ln x+a)e^{-x}\)

(1)证明:\(\forall a\in\mathbb{R}\),函数\(y=f(x)\)必有然点

(2)设\(x_0\)\(y=f(x)\)的然点,判断函数\(g(x)=f(x)-f(x_0)\)的零点个数并证明


(1)\(f^{\prime}(x)=\dfrac{e^{-x}}{x}-e^{-x}(\ln x+a)=e^{-x}\left(\dfrac{1}{x}-\ln x-a\right)\)

\(e^{-x}\left(\dfrac{1}{x}-\ln x-a\right)=(\ln x+a)e^{-x}\)

\(\dfrac{1}{x}-\ln x-a=\ln x+a\)

\(2a=\dfrac{1}{x}-2\ln x\)

\(\varphi(x)=\dfrac{1}{x}-2\ln x\),其单调递减,并且\(\varphi(x)\in\mathbb{R}\)

\(f(x)\)一定有然点

(2) \(g(x)=(\ln x+a)e^{-x}-(\ln x_0+a)e^{-x_0}\)

\(g^{\prime}(x)=f^{\prime}(x)=e^{-x}\left(\dfrac{1}{x}-\ln x-a\right)\)

考虑\(\gamma(x)=\dfrac{1}{x}-\ln x-a\),其单调递减

从而不难得到\(g(x)\)先增再减

并且\(\lim\limits_{x\to0}g(x)\to -\infty,\lim\limits_{x\to+\infty}g(x)\to 0\)

\(g(x_0)=0\)

\(g(x)\)只有唯一一个零点

posted @ 2024-02-05 13:54  会飞的鱼13  阅读(10)  评论(0)    收藏  举报