每日导数50

很综合的一道类偏移结合放缩

已知函数\(f(x)=xe^x-\ln(x+1),g(x)=2\ln(x+1)-a\sin x\)

(1)求\(f(x)\)的单调区间

(2)若\(a>2,\)函数\(h(x)=f(x)+g(x)\)

(i)证明:\(h(x)\)\(\left(0,\dfrac{\pi}{2}\right)\)上存在极值点

(ii)记\(h(x)\)\(\left(0,\dfrac{\pi}{2}\right)\)上的极值点为\(m\)\(h(x)\)\((0,\pi)\)上的零点和为\(n\),证:\(2m>n\)

(1)\(f^{\prime}(x)=(x+1)e^x-\dfrac{1}{x+1}\)

不难说明\(f^{\prime}(x)\)单调递增

同时发现\(f^{\prime}(0)=0\)

则得到\(f(x)\)\((-1,0)\)上单调递增,在\((1,+\infty)\)上单调递增

(2)\(h(x)=xe^x+\ln(x+1)-a\sin x,h^{\prime}(x)=(x+1)e^x+\dfrac{1}{x+1}-a\cos x\)

(i)\(h^{\prime}(0)=2-a<0,h^{\prime}\left(\dfrac{\pi}{2}\right)=\left(\dfrac{\pi}{2}+1\right)e^{\frac{\pi}{2}}+\dfrac{1}{\frac{\pi}{2}+1}>0\)

由零点存在定理,存在\(x_0\in\)\(\left(0,\dfrac{\pi}{2}\right)\),使得\(h^{\prime}(x_0)=0\)

(ii)\(h^{\prime\prime}(x)=(x+2)e^x-\dfrac{1}{(x+1)^2}+a\sin x\),其是单调递增的

从而\(h^{\prime\prime}(x)>h^{\prime\prime}(0)=2-1=1>0\)

\(h^{\prime}(x)\)单调递增

则由(i),\(x_0\)\(h^{\prime}(x)\)唯一的零点

并且\(x=x_0\)\(h(x)\)的极小值点

从而\(h(x)\)\((0,x_0)\)递减,在\((x_0,\pi)\)递增

\(x_0=m\)

又因\(h(0)=0,h(\pi)=\pi e^{\pi}+\ln(\pi+1)>0\)

从而\(h(x)\)\((0,\pi]\)上的零点设为\(a\)

\(h(x)\)\([0,\pi]\)上零点为\(x=0,x=a\)

\(n=a\)

则要证\(2m>n\)

即证\(2m>a\)

即证\(h(2m)>h(a)=0\)

\(h(2m)=2me^{2m}+\ln(2m+1)-a\sin2m\)

若直接这么放:\(2me^{2m}+\ln(2m+1)-a\sin2m>2me^{2m}+\ln(2m+1)-2>-1\)

放过头了.

考虑换掉\(a\)

\(h^{\prime}(m)=(m+1)e^m+\dfrac{1}{m+1}-a\cos m=0\)

\(a\cos m=(m+1)e^m+\dfrac{1}{m+1}\)

\(h(2m)=2me^{2m}+\ln(2m+1)-a\sin2m=2me^{2m}+\ln(2m+1)-2a\sin m\cos m=2me^{2m}+\ln(2m+1)-2\sin m\left[(m+1)e^m+\dfrac{1}{m+1}\right]>2me^{2m}+\ln(2m+1)-2m\left[(m+1)e^m+\dfrac{1}{m+1}\right]=2me^m\left[e^m-(m+1)\right]+\ln(2m+1)-\dfrac{2m}{m+1}\)

\(e^x>x-1(x>0)\),从而\(2me^m\left[e^m-(m+1)\right]>0\)

考虑\(\gamma(x)=\ln(2x+1)-\dfrac{2x}{x+1}\)

\(\gamma^{\prime}(x)=\dfrac{2}{2x+1}-\dfrac{2}{(x+1)^2}=\dfrac{2x^2}{(x+1)^2(2x+1)}>0\)

从而\(\gamma(x)>\gamma(0)=0\)

从而\(\ln(2m+1)-\dfrac{2m}{m+1}>0\)

\(h(2m)>0\)

得证!

posted @ 2024-02-04 00:54  会飞的鱼13  阅读(25)  评论(0)    收藏  举报