每日导数50
很综合的一道类偏移结合放缩
已知函数\(f(x)=xe^x-\ln(x+1),g(x)=2\ln(x+1)-a\sin x\)
(1)求\(f(x)\)的单调区间
(2)若\(a>2,\)函数\(h(x)=f(x)+g(x)\)
(i)证明:\(h(x)\)在\(\left(0,\dfrac{\pi}{2}\right)\)上存在极值点
(ii)记\(h(x)\)在\(\left(0,\dfrac{\pi}{2}\right)\)上的极值点为\(m\),\(h(x)\)在\((0,\pi)\)上的零点和为\(n\),证:\(2m>n\)
解
(1)\(f^{\prime}(x)=(x+1)e^x-\dfrac{1}{x+1}\)
不难说明\(f^{\prime}(x)\)单调递增
同时发现\(f^{\prime}(0)=0\)
则得到\(f(x)\)在\((-1,0)\)上单调递增,在\((1,+\infty)\)上单调递增
(2)\(h(x)=xe^x+\ln(x+1)-a\sin x,h^{\prime}(x)=(x+1)e^x+\dfrac{1}{x+1}-a\cos x\)
(i)\(h^{\prime}(0)=2-a<0,h^{\prime}\left(\dfrac{\pi}{2}\right)=\left(\dfrac{\pi}{2}+1\right)e^{\frac{\pi}{2}}+\dfrac{1}{\frac{\pi}{2}+1}>0\)
由零点存在定理,存在\(x_0\in\)\(\left(0,\dfrac{\pi}{2}\right)\),使得\(h^{\prime}(x_0)=0\)
(ii)\(h^{\prime\prime}(x)=(x+2)e^x-\dfrac{1}{(x+1)^2}+a\sin x\),其是单调递增的
从而\(h^{\prime\prime}(x)>h^{\prime\prime}(0)=2-1=1>0\)
则\(h^{\prime}(x)\)单调递增
则由(i),\(x_0\)是\(h^{\prime}(x)\)唯一的零点
并且\(x=x_0\)是\(h(x)\)的极小值点
从而\(h(x)\)在\((0,x_0)\)递减,在\((x_0,\pi)\)递增
则\(x_0=m\)
又因\(h(0)=0,h(\pi)=\pi e^{\pi}+\ln(\pi+1)>0\)
从而\(h(x)\)在\((0,\pi]\)上的零点设为\(a\)
则\(h(x)\)在\([0,\pi]\)上零点为\(x=0,x=a\)
则\(n=a\)
则要证\(2m>n\)
即证\(2m>a\)
即证\(h(2m)>h(a)=0\)
\(h(2m)=2me^{2m}+\ln(2m+1)-a\sin2m\)
若直接这么放:\(2me^{2m}+\ln(2m+1)-a\sin2m>2me^{2m}+\ln(2m+1)-2>-1\)
放过头了.
考虑换掉\(a\)
因\(h^{\prime}(m)=(m+1)e^m+\dfrac{1}{m+1}-a\cos m=0\)
则\(a\cos m=(m+1)e^m+\dfrac{1}{m+1}\)
则\(h(2m)=2me^{2m}+\ln(2m+1)-a\sin2m=2me^{2m}+\ln(2m+1)-2a\sin m\cos m=2me^{2m}+\ln(2m+1)-2\sin m\left[(m+1)e^m+\dfrac{1}{m+1}\right]>2me^{2m}+\ln(2m+1)-2m\left[(m+1)e^m+\dfrac{1}{m+1}\right]=2me^m\left[e^m-(m+1)\right]+\ln(2m+1)-\dfrac{2m}{m+1}\)
因\(e^x>x-1(x>0)\),从而\(2me^m\left[e^m-(m+1)\right]>0\)
考虑\(\gamma(x)=\ln(2x+1)-\dfrac{2x}{x+1}\)
\(\gamma^{\prime}(x)=\dfrac{2}{2x+1}-\dfrac{2}{(x+1)^2}=\dfrac{2x^2}{(x+1)^2(2x+1)}>0\)
从而\(\gamma(x)>\gamma(0)=0\)
从而\(\ln(2m+1)-\dfrac{2m}{m+1}>0\)
则\(h(2m)>0\)
得证!

浙公网安备 33010602011771号