每日导数49

典型的一道求参问题

已知\(f(x)=a(x+1)^2-4\ln x\)

(1)若\(a=\dfrac{1}{2}\),求曲线\(f(x)\)\(x=1\)处的切线方程

(2)若对任意的\(x\in[1,e],f(x)< 1\)恒成立,求实数\(a\)的取值范围

(1)\(a=\dfrac{1}{2}\),\(f(x)=\dfrac{1}{2}(x+1)^2-4\ln x,f(1)=2\)

\(f^{\prime}(x)=x+1-4\ln x,f^{\prime}(1)=-2\)

切线方程:\(y=-2x-4\)

(2)法一:参变分离

原不等式为\(a(x+1)^2<1+4\ln x\)

\(a<\dfrac{1+4\ln x}{(x+1)^2}\)
\(\varphi(x)=\dfrac{1+4\ln x}{(x+1)^2},\varphi^{\prime}(x)=\dfrac{2x-8x\ln x+4}{x(x+1)^3}=\dfrac{x\left(2-8\ln x+\dfrac{4}{x}\right)}{x(x+1)^3}\)

考虑\(h(x)=2-8\ln x+\dfrac{4}{x}\),其是单调递减的

\(h(1)=6,h(e)=\dfrac{4}{e}-6<0\)

从而由零点存在定理有唯一的零点\(m\in[1,e]\)

\(x\in[1,m],\varphi(x)\)单调递增

\(x\in(m,e],\varphi(x)\)单调递减

\(\varphi(1)=\dfrac{1}{4},\varphi(e)=\dfrac{5}{(e+1)^2}>\dfrac{1}{4}\)

\(a<\dfrac{1}{4}\)

法二:半分离

考虑为\(a(x+1)<\dfrac{4\ln x+1}{x+1}\)

\(h(x)=\dfrac{4\ln x+1}{x+1}\)

\(h^{\prime}(x)=\dfrac{3x-4x\ln x+4}{x(x+1)^2}=\dfrac{x\left(3-4\ln x+\dfrac{4}{x}\right)}{x(x+1)^2}\)

\(H(x)=3-4\ln x+\dfrac{4}{x}\),其单调递减

\(H(1)=1>0,H(e)=\dfrac{4}{e}-1>0\)

由零点存在定理,有唯一的点\(x_0\in[1,e]\)

\(h(x)\)\([1,x_0)\)上递增,在\((x_0,e]\)上递减

\(h(1)=\dfrac{1}{2},h(e)=\dfrac{5}{e+1}\)

\(y=a(x+1)\)过定点\((-1,0)\)

做出\(h(x)\)草图不难得到

要使得\(y=a(x+1)\)\(h(x)\)下方

则要有\(a\leq 0\)

\(a<\dfrac{\dfrac{1}{2}-0}{1-(-1)}=\dfrac{1}{4}\)

综上\(a<\dfrac{1}{4}\)

法三:直接讨论

\(f^{\prime}(x)=\dfrac{2(ax^2+ax-2)}{x}\)

Case1 当\(a=0\)时,\(f^{\prime}(x)=-\dfrac{4}{x}<0\)

\(f(x)\leq f(1)=0\)合题

Case2 当\(a<0\)时,\(y=ax^2+ax-2\)开口向下,对称轴为\(x=-\dfrac{1}{2}\)

并且\(x=0,y=-2\),从而\(y=ax^2+ax-2\)\(x\in[1,e]\)上单调递减

从而\(f(x)\leq f(1)=4a<0\)合题

Case3 当\(a>0\)时,开口向上,对称轴为\(x=-\dfrac{1}{2}\)

则一定能确定\(x_0>0\)使得\(f^{\prime}(x_0)=0\)

并且\(f(x_0)\)是极大值点\(x_0=\dfrac{-a+\sqrt{a^2+8a}}{2a}=\dfrac{\sqrt{a^2+8a}}{2a}-\dfrac{1}{2}=\dfrac{\sqrt{1+\dfrac{8}{a}}}{2}-\dfrac{1}{2}>1\)

从而若\(x_0>e\),则\(f(x)_{\max}=f(1)\)

\(1<x_0<e\),则\(f(x)_{\max}=f(1)\)\(f(e)\)

不管如何要有\(\begin{cases}f(1)<1\\ \\ f(e)<1\end{cases}\),得\(0<a<\dfrac{1}{4}\)

综上\(a<\dfrac{1}{4}\)

posted @ 2024-02-03 12:57  会飞的鱼13  阅读(21)  评论(0)    收藏  举报