每日导数47
如果有简单的方法,麻烦评论区给下思路,没写出来
已知函数\(f(x)=ax\ln x-x^2+1\)
(1)若\(f(x)\)只有一个零点,求实数\(a\)的取值范围
(2)证明:\((\ln 2)^2+\left(\ln\dfrac{3}{2}\right)^2+\ln\left(\dfrac{4}{3}\right)^2+\cdots+\left(\ln\dfrac{n+1}{n}\right)^2<1\)
解
(1)考虑\(f(x)=x\left(a\ln x-x+\dfrac{1}{x}\right)\)
记\(g(x)=a\ln x-x+\dfrac{1}{x}\)
\(g^{\prime}(x)=\dfrac{a}{x}-\dfrac{1}{x^2}-1=\dfrac{-x^2+ax-1}{x^2}\)
考虑\(y=-x^2+ax-1,\Delta=a^2-4\)
Case1 \(\Delta<0\)时,\(y<0\),则\(g^{\prime}(x)<0\)
从而\(g(x)\)单调递减,而\(g(1)=0\),从而\(x=1\)是唯一的零点
Case2 \(\Delta>0\),即\(a<-2\)或\(a>2\)时
\(y=0\)得\(x_1=\dfrac{a-\sqrt{a^2-4}}{2},x_2=\dfrac{a+\sqrt{a^2-4}}{2}\)
Case2.1当\(a<-2\)时,\(x_1,x_2<0\)
从而\(g(x)\)在\((0,+\infty)\)上单调递减,同样合题
Case2.2当\(a>2\)时,\(0<x_1<1<x_2\)
\(g(x)\)在\((0,x_1)\)和\((x_2,+\infty)\)上减,在\((x_1,x_2)\)上增
而\(x\to +\infty\),\(g(x)\to -\infty\)
从而在\((x_2,+\infty)\)上还有一个零点,不合题
综上\(a\leq 2\)
(2)
这是我尝试利用初等解法的步骤,发现放缩不精准
由(1)取\(a=2\),有\(f(x)=x\ln x-x^2+1\)
不难说明\(f(x)\)单调递减
从而\(f(x)<1\)
则2\(\ln x<\left(x-\dfrac{1}{x}\right)\)
则\(\ln x^2<\left(x-\dfrac{1}{x}\right)\)
即\(\ln^2x^2<x^2+\dfrac{1}{x^2}-2\)
取\(x^2=\dfrac{k+1}{k}\)
则\(\ln^2\dfrac{k+1}{k}<\dfrac{k+1}{k}-1+\dfrac{k}{k+1}-1\)
则\(\ln^2\dfrac{k+1}{k}<\dfrac{1}{k}-\dfrac{1}{k+1}\)
取\(k=1,2,3\cdots n\),有
\((\ln 2)^2+\left(\ln\dfrac{3}{2}\right)^2+\ln\left(\dfrac{4}{3}\right)^2+\cdots+\left(\ln\dfrac{n+1}{n}\right)^2=1-\dfrac{1}{n+1}<1\)

浙公网安备 33010602011771号