每日导数47

如果有简单的方法,麻烦评论区给下思路,没写出来

已知函数\(f(x)=ax\ln x-x^2+1\)

(1)若\(f(x)\)只有一个零点,求实数\(a\)的取值范围

(2)证明:\((\ln 2)^2+\left(\ln\dfrac{3}{2}\right)^2+\ln\left(\dfrac{4}{3}\right)^2+\cdots+\left(\ln\dfrac{n+1}{n}\right)^2<1\)

(1)考虑\(f(x)=x\left(a\ln x-x+\dfrac{1}{x}\right)\)

\(g(x)=a\ln x-x+\dfrac{1}{x}\)

\(g^{\prime}(x)=\dfrac{a}{x}-\dfrac{1}{x^2}-1=\dfrac{-x^2+ax-1}{x^2}\)

考虑\(y=-x^2+ax-1,\Delta=a^2-4\)

Case1 \(\Delta<0\)时,\(y<0\),则\(g^{\prime}(x)<0\)

从而\(g(x)\)单调递减,而\(g(1)=0\),从而\(x=1\)是唯一的零点

Case2 \(\Delta>0\),即\(a<-2\)\(a>2\)

\(y=0\)\(x_1=\dfrac{a-\sqrt{a^2-4}}{2},x_2=\dfrac{a+\sqrt{a^2-4}}{2}\)

Case2.1当\(a<-2\)时,\(x_1,x_2<0\)

从而\(g(x)\)\((0,+\infty)\)上单调递减,同样合题

Case2.2当\(a>2\)时,\(0<x_1<1<x_2\)

\(g(x)\)\((0,x_1)\)\((x_2,+\infty)\)上减,在\((x_1,x_2)\)上增

\(x\to +\infty\)\(g(x)\to -\infty\)

从而在\((x_2,+\infty)\)上还有一个零点,不合题

综上\(a\leq 2\)

(2)

这是我尝试利用初等解法的步骤,发现放缩不精准

由(1)取\(a=2\),有\(f(x)=x\ln x-x^2+1\)

不难说明\(f(x)\)单调递减

从而\(f(x)<1\)

则2\(\ln x<\left(x-\dfrac{1}{x}\right)\)

\(\ln x^2<\left(x-\dfrac{1}{x}\right)\)

\(\ln^2x^2<x^2+\dfrac{1}{x^2}-2\)

\(x^2=\dfrac{k+1}{k}\)

\(\ln^2\dfrac{k+1}{k}<\dfrac{k+1}{k}-1+\dfrac{k}{k+1}-1\)

\(\ln^2\dfrac{k+1}{k}<\dfrac{1}{k}-\dfrac{1}{k+1}\)

\(k=1,2,3\cdots n\),有

\((\ln 2)^2+\left(\ln\dfrac{3}{2}\right)^2+\ln\left(\dfrac{4}{3}\right)^2+\cdots+\left(\ln\dfrac{n+1}{n}\right)^2=1-\dfrac{1}{n+1}<1\)

posted @ 2024-02-01 00:33  会飞的鱼13  阅读(11)  评论(0)    收藏  举报