每日导数46

特别典型的一道端点效应与放缩找点

已知\(f(x)=m(x-1)^2-2x+2\ln x,m>2\)

(1)证明:函数\(f(x)\)存在单调递减区间,并求出该函数单调递减区间\((a,b)\)的长度\(b-a\)的取值范围

(2)当\(x\geq 1\)时,\(f(x)\leq 2xe^{x-1}-4x\)恒成立,求\(m\)的取值范围.

(1)\(f^{\prime}(x)=2m(x-1)-2+\dfrac{2}{x}=2\cdot\dfrac{mx^2-(1+m)x+1}{x}=2\cdot\dfrac{(mx-1)(x-1)}{x}\)

\(f^{\prime}(x)=0\)\(x_1=\dfrac{1}{m},x_2=1\),因\(m>2\),则\(0<x_1<x_2\)

从而得到\(f(x)\)\((x_1,x_2)\)上单调递减

\(a=\dfrac{1}{m},b=1\)

\(b-a=1-\dfrac{1}{m}\in\left(\dfrac{1}{2},1\right)\)

(2) 原不等式为\(m(x-1)^2-2x+2\ln x-2xe^{x-1}+4x\leq 0\)

\(\varphi(x)=m(x-1)^2+2\ln x-2xe^{x-1}+2x\),发现\(\varphi(1)=0\)

\(\varphi^{\prime}(x)=2m(x-1)+\dfrac{2}{x}-2e^{x-1}(1+x)+2\),发现\(\varphi^{\prime}(1)=0\)

\(\varphi^{\prime\prime}(x)=2m-\dfrac{2}{x^2}-2e^{x-1}(x+2)\)

\(\varphi^{\prime\prime\prime}(x)=\dfrac{4}{x^3}-2e^{x-1}(x+3)\),其是单调递减的

\(\varphi^{\prime\prime\prime}(x)<\varphi^{\prime\prime\prime}(1)=-4<0\)

\(\varphi^{\prime\prime}(x)\)单调递减

并且\(\varphi^{\prime\prime}(1)=2m-8\)

Case1 若\(m>4\)时,\(\varphi^{\prime\prime}(1)>0\)

\(\varphi^{\prime\prime}(x)<8-\dfrac{2}{x^2}-2x(x+2)=8-\dfrac{2}{x^2}-2x^2-4x\)

\(x=2\),有\(\varphi^{\prime\prime}(2)<-\dfrac{17}{2}<0\)

则由零点存在定理,在\(x\in(1,2)\)中,一定存在\(x_0\),使得\(\varphi^{\prime\prime}(x_0)=0\)

从而在\(x\in(1,x_0)\)上,\(\varphi^{\prime}(x)\)单调递增,则\(\varphi^{\prime}(x)>0\)

从而在\(x\in(1,x_0)\)上,\(\varphi(x)>\varphi(1)=0\),不合题

Case2 若\(m\leq 4\)时,\(\varphi^{\prime}(x)<\varphi^{\prime\prime}(1)<0\)

\(\varphi^{\prime}(x)\)单调递减,从而\(\varphi^{\prime}(x)<\varphi^{\prime}(1)=0\)

\(\varphi(x)\)单调递减,从而\(\varphi(x)<\varphi(1)=0\),合题

综上\(m\in(2,4]\)

posted @ 2024-01-31 10:11  会飞的鱼13  阅读(15)  评论(0)    收藏  举报