每日导数43

类似于23新高考一道题,分析出界限

已知函数\(f(x)=\dfrac{x}{e^x},g(x)=\dfrac{\ln x}{x}\),证明:存在直线\(y=b\),其与两条曲线\(y=f(x),g=g(x)\)共有三个不同的交点,并且从左到右三个交点的横坐标成等比数列

解.

先说明\(b\)的存在性

\(f^{\prime}(x)=\dfrac{1-x}{e^x},g^{\prime}(x)=\dfrac{1-\ln x}{x^2}\)

则不难得到\(f(x)\)\((0,1)\)上增,在\((1,+\infty)\)上减,并且\(f(x)_{\max}=f(1)=\dfrac{1}{e},\lim\limits_{x\to0}f(x)=0,\lim\limits_{x\to+\infty}f(x)=0\)

\(g(x)\)\((0,e)\)上增,在\((e,+\infty)\)上减,并且\(g(x)_{\max}=g(e)=e,\lim\limits_{x\to0}g(x)=-\infty,\lim\limits_{x\to+\infty}g(x)=0\)

分析:因为两个函数都是先增再减的,并且最大值都相同,只是对应的\(x\)不一样,那么如果考虑的不充分的化会发现,\(y=b\)与两条曲线都会各自有两个交点的,从而不符合题设条件,进而一定存在\(x_2\)使得\(f(x_2)=g(x_2)\),并且还能更加的确定\(1<x_2<e,\)下面我们来说明下:

考虑\(\dfrac{x}{e^x}=\dfrac{\ln x}{x}\)
\(\varphi(x)=\dfrac{x}{e^x}-\dfrac{\ln x}{x},\varphi(1)=\dfrac{1}{e}>0,\varphi(e)=\dfrac{e}{e^e}-\dfrac{1}{e}<0\)

并且\(\varphi^{\prime}(x)=\dfrac{1-x}{e^x}-\dfrac{1-\ln x}{x^2}<0\)

从而在\(x\in(1,e)\)上有唯一的点\(x_2\)使得\(\dfrac{x_2}{e^{x_2}}=\dfrac{\ln x_2}{x_2}\)

从而取\(b=\dfrac{x_2}{e^{x_2}}=\dfrac{\ln x_2}{x_2}\),是满足条件的\(b\)

并且\(x_1<1<x_2<e<x_3\)

则有\(\dfrac{x_1}{e^{x_1}}=\dfrac{x_2}{e^{x_2}}=\dfrac{\ln x_2}{x_2}=\dfrac{\ln x_3}{x_3}\)

\(x_2^2=e^{x_2}\ln x_2\),从而后面便是要说明\(e^{x_2}\ln x_2=x_1x_2\)

\(\dfrac{x_1}{e^{x_1}}=\dfrac{\ln x_2}{x_2}=\dfrac{\ln x_2}{e^{\ln x_2}}\)

\(x_2<e\),则\(\ln x_2<1\),从而\(x_1=\ln x_2\)

同样的\(\dfrac{\ln e^{x_2}}{e^{x_2}}=\dfrac{x_2}{e^{x_2}}=\dfrac{\ln x_3}{x_3}\)

\(x_2>1\),则\(e^{x_2}>e\),从而\(e^{x_2}=x_3\)

\(x_1x_3=\ln x_2\cdot e^{x_2}=x_e^2\)

posted @ 2024-01-28 00:30  会飞的鱼13  阅读(16)  评论(0)    收藏  举报