每日导数42
不一样的比值代换
已知函数\(f(x)=\dfrac{(x+1)\ln x+a+1}{x}\),函数\(f(x)\)有两个极值点
(1) 求\(a\)的取值范围
(2) 若函数\(f(x)\)的两个极值点为\(x_1,x_2(x_1<x_2)\)且\(3x_1\geq x_2\),求\(\ln x_1+\ln x_2+2a\)的最大值
解
(1) \(f^{\prime}(x)=\dfrac{x\ln x+x+1-(x+1)\ln x-a-1}{x^2}=\dfrac{x-\ln x-a}{x^2}\)
考虑\(x-a=\ln x\),因\(=a,y=x-1\)与\(y=\ln x\)相切
从而只有\(a>1\)时,\(f(x)\)有两个极值点
(2)\(\begin{cases} x_1-\ln x_1-a=0\\ \\ x_2-\ln x_2-a=0 \end{cases}\),两式取和有\(x_1+x_2-(\ln x_1+\ln x_2)=2a\),两式做差有\(x_1-x_2=\ln\dfrac{x_1}{x_2}\)
从而原式变为\(x_1+x_2=2x_2+\ln\dfrac{x_1}{x_2}\),令\(\dfrac{x_1}{x_2}=t\),即\(x_1=tx_2\)
从而\(x_2(t-1)=\ln\dfrac{x_1}{x_2}=\ln t\)
则\(x_2=\dfrac{\ln t}{t-1}\),
则原式为\(h(t)=\dfrac{2\ln t}{t-1}+\ln t,\dfrac{1}{3}\leq t<1\)
\(h^{\prime}(t)=\dfrac{t^2-2t\ln t-1}{t(t-1)^2}\)
\(\varphi(t)=t^2-2t\ln t-1,\varphi^{\prime}(t)=2(t-\ln t-1)>0\)
则\(\varphi(t)<\varphi\left(1\right)=0\)
从而\(h(t)\)单调递减
从而\(h(t)_{\max}=h\left(\dfrac{1}{3}\right)=-2\ln 3\)

浙公网安备 33010602011771号