每日导数39

简单的找点问题

已知函数\(f(x)=ax^3+2\sin x-x\cos x\)

\((1)\)\(a=-\dfrac{1}{2},x\in\left(0,\dfrac{\pi}{2}\right)\),证明:\(f(x)\geq 0\)

\((2)\)探究\(f(x)\)\((-\pi,\pi)\)的极值点个数

\((1)\) \(f(x)=-\dfrac{1}{2}x^3+2\sin x-x\cos x,f^{\prime}(x)=-\dfrac{3}{2}x^2+\cos x+x\sin x,f^{\prime\prime}(x)=-3x+x\cos x=x(\cos x-3)<0\)
\(f^{\prime}(x)\)单调递减,而\(f^{\prime}(0)=1,f^{\prime}\left(\dfrac{\pi}{2}\right)=-\dfrac{3\pi^2}{8}+\dfrac{\pi}{2}<0\)

由零点存在定理,存在唯一的零点\(x_0\),使得\(f^{\prime}(x_0)=0\)

\(f(x)\)\((0,x_0)\)上增,在\(\left(x_0,\dfrac{\pi}{2}\right)\)上单调递减,因\(f(0)=0,f\left(\dfrac{\pi}{2}\right)=-\dfrac{\pi^3}{16}+2>0\)

从而\(f(x)\geq 0\)

\((2)\) 区间对称,考虑奇偶性,因\(f^{\prime}(x)\)是偶函数,所以只考虑\(x\in\left[0,\pi\right)\)上零点个数

\(f^{\prime}(x)=3ax^2+\cos x+x\sin x,f^{\prime\prime}(x)=6ax+x\cos x=x(6a+\cos x)\)

Case1 若\(a\geq \dfrac{1}{6}\),则\(f^{\prime\prime}(x)\geq 0\),从而\(f^{\prime}(x)\)单调递增

而因\(f^{\prime}(0)=1>0\),从而没零点,则没有极值点

Case2 若\(a<\dfrac{1}{6}\)

\(\cos x\)\((0,\pi)\)上单调递减,则一定存在一个零点\(x_0\)使得\(f^{\prime\prime}(x_0)=0\)

\(f^{\prime}(x)\)\((0,x_0)\)上增,在\((x_0,\pi)\)上减,\(f^{\prime}(\pi)=3a\pi^2-1\)

Case2.1 若\(\dfrac{1}{3\pi^2}<a<\dfrac{1}{6}\)\(f^{\prime}(\pi)>0\),没有零点

Case2.2 若\(a\leq \dfrac{1}{3\pi^2}\)\(f^{\prime}(\pi)\leq 0\),一个零点

综上:\(a>\dfrac{1}{3\pi^2}\),没有极值点

\(a\leq \dfrac{1}{3\pi^2}\),两个极值点

posted @ 2024-01-24 08:01  会飞的鱼13  阅读(16)  评论(0)    收藏  举报