每日导数35
一道典型但又很难想到思路的双变量问题
已知函数\(f(x)=\ln x-ax-\dfrac{1}{x}\)
\((1)\) 讨论函数\(f(x)\)的单调性
\((2)\) 函数\(f(x)\)有两个零点\(x_1,x_2(x_1<x_2)\),证明:\(x_1x_2>2e^2\)
解
\((1)\) \(f^{\prime}(x)=\dfrac{1}{x}+\dfrac{1}{x^2}-a=\dfrac{-ax^2+x+1}{x^2}\)
当\(a=0\)时,\(f(x)\)在\(x>0\)上单调递增
当\(a>0\)时,\(\Delta>0\),从而\(x_1<0,x_2>0\)
则\(f(x)\)在\((0,x_2)\)单调递减,在\((x_2,+\infty)\)上单调递增
当\(a<0\)时,\(f(x)\)单调递增
(2)要证明:\(x_1x_2>2e^2\),即证:\(\ln x_1+\ln x_2>\ln 2+2\)
由题\(\begin{cases}\ln x_1-ax_1-\dfrac{1}{x_1}=0\\ \\ \ln x_2-ax_2-\dfrac{1}{x_2}=0 \end{cases}\),即\(\ln x_1+\ln x_2=\dfrac{x_1+x_2}{x_1x_2}+a(x_1+x_2)\)
两式相减有\(a=\dfrac{\ln x_1-\ln x_2}{x_1-x_2}+\dfrac{1}{x_1x_2}\)
从而\(\ln x_1+\ln x_2=\dfrac{x_1+x_2}{x_1x_2}+\dfrac{(\ln x_1-\ln x_2)(x_1+x_2)}{x_1-x_2}+\dfrac{x_1+x_2}{x_1x_2}=\dfrac{\ln x_1-\ln x_2}{x_1-x_2}(x_1+x_2)+\dfrac{2(x_1+x_2)}{x_1x_2}\)
由对数均值不等式:\(\dfrac{a-b}{\ln a-\ln b}<\dfrac{a+b}{2}\)得
\(\ln x_1+\ln x_2>2+\dfrac{2(x_1+x_2)}{x_1x_2}\)
即\(\ln x_1+\ln x_2-\dfrac{2(x_1+x_2)}{x_1x_2}>2\)
而\(\dfrac{2(x_1+x_2)}{x_1x_2}>\dfrac{4}{\sqrt{x_1x_2}}\)
则\(2<\ln x_1+\ln x_2-\dfrac{4}{\sqrt{x_1x_2}}\)
即\(2\ln \sqrt{x_1x_2}-\dfrac{4}{\sqrt{x_1x_2}}>2\)
记\(g(t)=2\ln t-\dfrac{4}{t}-2\),单调递增
而不难发现\(g(\sqrt{2}e)<0,g(e^2)>0\)
从而\(t>\sqrt{2}e\)
即\(x_1x_2>2e^2\)

浙公网安备 33010602011771号