每日导数33

找点问题着重于分析图形的走势

已知函数\(f(x)=e^x-ax\sin x-x-1\)

\((1)\) \(a=0\)时,证明:\(f(x)\geq 0\)恒成立

\((2)\) 若函数\(f(x)\)\((0,\pi)\)上只有唯一的零点,求\(a\)的取值范围.

\((1)\) 经典的切线放缩,略

\((2)\) 分析:\(f(0)=0,f(\pi)=e^{\pi}-\pi-1>0\)\(f^{\prime}(x)=e^x-a\sin x-ax\cos x-1\)

稍微作图分析不难得到,\(f(x)\)图像最有可能是先减再增的,如果是先减,再复杂的情况另说.

\(f^{\prime}(0)=0\),则要使得递减,则必须有\(f^{\prime\prime}(0)< 0\)

\(f^{\prime\prime}(x)=e^x-a\cos x-a\cos x+ax\sin x=e^x-2a\cos x+ax\sin x,f^{\prime\prime}(0)=1-2a< 0\)

\(a> \dfrac{1}{2}\),从而\(a=\dfrac{1}{2}\)是分界值.下面说明\(a >\dfrac{1}{2}\)为解答.

分析结束,开始叙述语言:

\(a\leq\dfrac{1}{2}\)时,\(f(x)>e^x-\dfrac{x\sin x}{2}-x-1>e^x-\dfrac{x^2}{2}-x-1>0\)

从而,没有零点.

\(a>\dfrac{1}{2}\)时,根据我们分析,\(f^{\prime}(x)\)是先递减再递增的并且是先负再正,从而\(f^{\prime\prime}(x)\)先负再正

因而思路清晰了许多:

\(x\in\left(0,\dfrac{\pi}{2}\right),f^{\prime\prime}(x)=e^x+a(x\sin x-2\cos x),f^{\prime\prime\prime}(x)=e^x+a(3\sin x+x\cos x)>0\)

从而\(f^{\prime\prime}(x)\)\(\left(0,\dfrac{\pi}{2}\right)\)上单调递增,而\(f^{\prime\prime}(0)=1-2a<0,f^{\prime\prime}\left(\dfrac{\pi}{2}\right)=e^{\frac{\pi}{2}}+\dfrac{a\pi}{2}>0\)

一定存在\(x_0\in\left(0,\dfrac{\pi}{2}\right)\)使得则\(f^{\prime}(x)\)\(\left(0,x_0\right)\)上递减,在\(\left(x_0,\dfrac{\pi}{2}\right)\)递增

而根据我们之前分析,我们已经找到了先递减再递增了,从而只需要分析出\(x\in\left(\dfrac{\pi}{2},0\right)\)\(f^{\prime\prime}(x)\)大于0即可

\(f^{\prime\prime}(x)=e^x+a(x\sin x-2\cos x)>0\)

则综上我们得到了\(f^{\prime}(x)\)\((0,x_0)\)上单调减少,在\((x_0,\pi)\)上单调递增

\(f^{\prime}(\pi)=e^{\pi}-\pi-1>0\),从而一定存在唯一的\(m\in(0,\pi)\)使得\(f^{\prime}(m)=0\)

则有\(f(x)\)\((0,m)\)递减,在\((m,\pi)\)上递增

进而在\((0,\pi)\)上一定有唯一的零点.

综上\(a>\dfrac{1}{2}\)

posted @ 2024-01-16 06:51  会飞的鱼13  阅读(24)  评论(0)    收藏  举报