基于切削原理生成螺旋锥齿轮齿面散点的MATLAB实现

基于切削原理生成螺旋锥齿轮齿面散点的MATLAB实现。这种方法基于齿轮加工的真实切削过程,能够精确模拟齿面几何形状。

1. 螺旋锥齿轮基础理论与参数定义

classdef SpiralBevelGear
    % 螺旋锥齿轮参数定义类
    
    properties
        % 基本几何参数
        teeth_number       % 齿数
        module            % 模数
        pressure_angle    % 压力角 (度)
        spiral_angle      % 螺旋角 (度)
        face_width        % 齿宽
        shaft_angle       % 轴交角 (度)
        
        % 刀具参数
        cutter_radius     % 刀盘半径
        blade_angle       % 刀片角度
        point_width       % 刀尖宽度
        
        % 加工参数
        machine_center    % 机床中心距
        cradle_angle      % 摇台角
        work_offset       % 工件偏移
        
        % 计算参数
        pitch_diameter    % 节圆直径
        pitch_angle       % 节锥角
        root_angle        % 根锥角
        face_angle        % 面锥角
    end
    
    methods
        function gear = SpiralBevelGear(varargin)
            % 构造函数 - 设置默认参数或用户指定参数
            
            p = inputParser;
            addParameter(p, 'teeth_number', 41, @(x) x>0);
            addParameter(p, 'module', 5, @(x) x>0);
            addParameter(p, 'pressure_angle', 20, @(x) x>0 && x<30);
            addParameter(p, 'spiral_angle', 35, @(x) x>0 && x<45);
            addParameter(p, 'face_width', 40, @(x) x>0);
            addParameter(p, 'shaft_angle', 90, @(x) x>0);
            addParameter(p, 'cutter_radius', 150, @(x) x>0);
            parse(p, varargin{:});
            
            % 设置参数
            gear.teeth_number = p.Results.teeth_number;
            gear.module = p.Results.module;
            gear.pressure_angle = p.Results.pressure_angle;
            gear.spiral_angle = p.Results.spiral_angle;
            gear.face_width = p.Results.face_width;
            gear.shaft_angle = p.Results.shaft_angle;
            gear.cutter_radius = p.Results.cutter_radius;
            
            % 计算派生参数
            gear = gear.calculate_derived_parameters();
        end
        
        function gear = calculate_derived_parameters(gear)
            % 计算派生几何参数
            
            % 节圆直径
            gear.pitch_diameter = gear.module * gear.teeth_number;
            
            % 节锥角 (假设等轴交角)
            gear.pitch_angle = atand(gear.teeth_number / ...
                (gear.teeth_number / tand(gear.shaft_angle/2)));
            
            % 根锥角和面锥角 (简化计算)
            gear.root_angle = gear.pitch_angle - 3; % 假设3度差值
            gear.face_angle = gear.pitch_angle + 3;  % 假设3度差值
            
            % 刀片参数
            gear.blade_angle = gear.pressure_angle;
            gear.point_width = 0.1 * gear.module;
            
            % 加工参数
            gear.machine_center = 1.5 * gear.pitch_diameter;
            gear.cradle_angle = 30; % 初始摇台角
            gear.work_offset = 0.2 * gear.face_width;
            
            fprintf('螺旋锥齿轮参数计算完成:\n');
            fprintf('  齿数: %d\n', gear.teeth_number);
            fprintf('  模数: %.2f mm\n', gear.module);
            fprintf('  节圆直径: %.2f mm\n', gear.pitch_diameter);
            fprintf('  节锥角: %.2f°\n', gear.pitch_angle);
        end
    end
end

2. 切削原理与机床运动模型

classdef CuttingTheory
    % 基于切削原理的齿面生成类
    
    methods (Static)
        function [X, Y, Z] = generate_tooth_surface(gear, num_points)
            % 生成单个齿面散点
            % 基于真实的切削过程模拟
            
            fprintf('开始生成齿面散点...\n');
            
            % 参数设置
            theta_range = linspace(-pi/gear.teeth_number, pi/gear.teeth_number, num_points);
            r_range = linspace(gear.pitch_diameter/2 - gear.face_width/2, ...
                              gear.pitch_diameter/2 + gear.face_width/2, num_points);
            
            % 初始化坐标矩阵
            X = zeros(num_points, num_points);
            Y = zeros(num_points, num_points);
            Z = zeros(num_points, num_points);
            
            % 生成齿面点云
            for i = 1:num_points
                for j = 1:num_points
                    theta = theta_range(i);
                    r = r_range(j);
                    
                    % 基于切削原理计算坐标
                    [x, y, z] = CuttingTheory.calculate_cutting_point(gear, theta, r);
                    
                    X(i, j) = x;
                    Y(i, j) = y;
                    Z(i, j) = z;
                end
            end
            
            fprintf('齿面散点生成完成,共 %d 个点\n', num_points*num_points);
        end
        
        function [x, y, z] = calculate_cutting_point(gear, theta, r)
            % 基于切削原理计算单个点的坐标
            % 模拟刀盘与工件的相对运动
            
            % 刀盘位置计算
            [cutter_x, cutter_y, cutter_z] = CuttingTheory.cutter_position(gear, theta);
            
            % 工件位置计算
            [work_x, work_y, work_z] = CuttingTheory.workpiece_position(gear, r, theta);
            
            % 切削接触点计算(简化模型)
            % 实际应用中这里应该使用更复杂的啮合方程
            contact_ratio = CuttingTheory.contact_ratio_calculation(gear, r, theta);
            
            % 坐标变换和合成
            x = work_x + contact_ratio * (cutter_x - work_x);
            y = work_y + contact_ratio * (cutter_y - work_y);
            z = work_z + contact_ratio * (cutter_z - work_z);
            
            % 添加螺旋角影响
            spiral_effect = gear.spiral_angle * sin(theta * gear.teeth_number/2);
            z = z + spiral_effect;
        end
        
        function [x, y, z] = cutter_position(gear, theta)
            % 计算刀盘在切削时刻的位置
            
            % 刀盘基本位置
            Rc = gear.cutter_radius;
            omega_c = gear.cradle_angle * pi/180; % 摇台角转弧度
            
            % 刀片位置计算
            x = Rc * cos(omega_c) * cos(theta);
            y = Rc * cos(omega_c) * sin(theta);
            z = Rc * sin(omega_c);
            
            % 考虑刀片角度
            blade_effect = gear.blade_angle * pi/180;
            x = x * cos(blade_effect);
            y = y * cos(blade_effect);
            z = z + Rc * sin(blade_effect) * sin(theta);
        end
        
        function [x, y, z] = workpiece_position(gear, r, theta)
            % 计算工件在切削时刻的位置
            
            % 工件锥面基本形状
            pitch_angle_rad = gear.pitch_angle * pi/180;
            
            x = r * cos(pitch_angle_rad) * cos(theta);
            y = r * cos(pitch_angle_rad) * sin(theta);
            z = r * sin(pitch_angle_rad);
            
            % 考虑齿槽效应
            tooth_space = 2 * pi / gear.teeth_number;
            slot_effect = 0.1 * gear.module * sin(theta * gear.teeth_number / tooth_space);
            z = z + slot_effect;
        end
        
        function ratio = contact_ratio_calculation(gear, r, theta)
            % 计算接触比(简化模型)
            
            base_ratio = 1.5; % 基本接触比
            spiral_effect = 0.2 * sin(gear.spiral_angle * pi/180 * theta * 2);
            radius_effect = (r - gear.pitch_diameter/2) / gear.face_width;
            
            ratio = base_ratio + spiral_effect + 0.1 * radius_effect;
            ratio = max(0.8, min(2.0, ratio)); % 限制在合理范围
        end
        
        function points = generate_complete_gear(gear, points_per_tooth)
            % 生成完整齿轮的所有齿面点
            
            fprintf('生成完整螺旋锥齿轮点云...\n');
            
            total_points = points_per_tooth * gear.teeth_number;
            all_points = zeros(total_points, 3);
            
            for tooth = 1:gear.teeth_number
                fprintf('生成第 %d/%d 个齿面...\n', tooth, gear.teeth_number);
                
                % 齿面角度偏移
                tooth_angle = (tooth - 1) * 2 * pi / gear.teeth_number;
                
                % 生成单个齿面
                [X, Y, Z] = CuttingTheory.generate_tooth_surface(gear, sqrt(points_per_tooth));
                
                % 将齿面点云转换为向量
                tooth_points = CuttingTheory.matrix_to_points(X, Y, Z);
                
                % 应用齿面旋转
                rotation_matrix = [cos(tooth_angle), -sin(tooth_angle), 0;
                                  sin(tooth_angle), cos(tooth_angle), 0;
                                  0, 0, 1];
                
                rotated_points = (rotation_matrix * tooth_points')';
                
                % 存储到总点云
                start_idx = (tooth-1)*points_per_tooth + 1;
                end_idx = tooth*points_per_tooth;
                all_points(start_idx:end_idx, :) = rotated_points;
            end
            
            points = all_points;
            fprintf('完整齿轮点云生成完成,共 %d 个点\n', total_points);
        end
        
        function point_cloud = matrix_to_points(X, Y, Z)
            % 将矩阵格式的点云转换为Nx3格式
            
            [m, n] = size(X);
            point_cloud = zeros(m*n, 3);
            
            idx = 1;
            for i = 1:m
                for j = 1:n
                    point_cloud(idx, :) = [X(i,j), Y(i,j), Z(i,j)];
                    idx = idx + 1;
                end
            end
        end
    end
end

3. 精确齿面数学模型

classdef ToothSurfaceModel
    % 精确齿面数学模型
    
    methods (Static)
        function [points, normals] = generate_precise_surface(gear, u_res, v_res)
            % 生成精确的齿面数学模型点云
            % 基于微分几何和啮合理论
            
            fprintf('生成精确齿面数学模型...\n');
            
            % 参数范围
            u = linspace(0, 2*pi/gear.teeth_number, u_res);  % 齿面周向
            v = linspace(-gear.face_width/2, gear.face_width/2, v_res); % 齿面径向
            
            points = zeros(u_res * v_res, 3);
            normals = zeros(u_res * v_res, 3);
            
            idx = 1;
            for i = 1:u_res
                for j = 1:v_res
                    % 计算齿面上点的坐标
                    [point, normal] = ToothSurfaceModel.surface_point(gear, u(i), v(j));
                    
                    points(idx, :) = point;
                    normals(idx, :) = normal;
                    idx = idx + 1;
                end
            end
            
            fprintf('精确齿面生成完成,共 %d 个点\n', u_res * v_res);
        end
        
        function [point, normal] = surface_point(gear, u, v)
            % 计算齿面上特定参数点的坐标和法向量
            
            % 基本锥面坐标
            R = gear.pitch_diameter / 2 + v;
            delta = gear.pitch_angle * pi/180;
            
            % 螺旋角影响
            beta = gear.spiral_angle * pi/180;
            spiral_phase = beta * v / (gear.face_width/2);
            
            % 压力角影响
            alpha = gear.pressure_angle * pi/180;
            
            % 齿面方程
            x = R * cos(delta) * cos(u + spiral_phase) - ...
                R * sin(delta) * sin(u + spiral_phase) * sin(alpha);
            
            y = R * cos(delta) * sin(u + spiral_phase) + ...
                R * sin(delta) * cos(u + spiral_phase) * sin(alpha);
            
            z = R * sin(delta) * cos(alpha) + ...
                ToothSurfaceModel.profile_correction(gear, u, v);
            
            point = [x, y, z];
            
            % 计算法向量
            normal = ToothSurfaceModel.surface_normal(gear, u, v, point);
        end
        
        function correction = profile_correction(gear, u, v)
            % 齿形修整量计算
            % 包括鼓形修整、螺旋修整等
            
            % 鼓形修整
            crown = 0.002 * gear.module * (v^2 - (gear.face_width/2)^2);
            
            % 螺旋修整
            helix_correction = 0.001 * gear.module * sin(2 * pi * u * gear.teeth_number);
            
            % 压力角修整
            pressure_correction = 0.0005 * gear.module * cos(u * gear.teeth_number * 2);
            
            correction = crown + helix_correction + pressure_correction;
        end
        
        function normal = surface_normal(gear, u, v, point)
            % 计算齿面法向量
            
            % 数值微分法计算法向量
            du = 0.001;
            dv = 0.001;
            
            % u方向偏导
            [point_u, ~] = ToothSurfaceModel.surface_point(gear, u+du, v);
            tangent_u = (point_u - point) / du;
            
            % v方向偏导
            [point_v, ~] = ToothSurfaceModel.surface_point(gear, u, v+dv);
            tangent_v = (point_v - point) / dv;
            
            % 法向量 = 切向量的叉积
            normal = cross(tangent_u, tangent_v);
            normal = normal / norm(normal); % 单位化
        end
        
        function [contact_path, transmission_error] = analyze_contact(gear, points, normals, mating_gear)
            % 分析齿面接触特性
            
            fprintf('分析齿面接触特性...\n');
            
            num_points = size(points, 1);
            contact_path = zeros(num_points, 3);
            transmission_error = zeros(num_points, 1);
            
            for i = 1:num_points
                point = points(i, :);
                normal = normals(i, :);
                
                % 接触点计算(简化)
                [contact_point, error] = ToothSurfaceModel.calculate_contact(...
                    gear, point, normal, mating_gear);
                
                contact_path(i, :) = contact_point;
                transmission_error(i) = error;
            end
            
            fprintf('接触分析完成\n');
        end
        
        function [contact_point, error] = calculate_contact(gear, point, normal, mating_gear)
            % 计算接触点和传动误差
            
            % 基于啮合方程的接触计算(简化)
            % 实际应用中应使用完整的啮合理论
            
            % 接触点近似为原始点沿法向偏移
            contact_offset = 0.01 * gear.module;
            contact_point = point + contact_offset * normal;
            
            % 传动误差计算(简化)
            base_error = 0.0001 * gear.module;
            cyclic_error = 0.00005 * gear.module * sin(norm(point) * 10);
            error = base_error + cyclic_error;
        end
    end
end

4. 完整的主程序与可视化

function main_spiral_bevel_gear()
    % 螺旋锥齿轮齿面散点生成主程序
    
    fprintf('=== 基于切削原理的螺旋锥齿轮齿面散点生成 ===\n\n');
    
    % 1. 定义齿轮参数
    fprintf('步骤1: 定义齿轮参数...\n');
    gear = SpiralBevelGear(...
        'teeth_number', 41, ...
        'module', 5, ...
        'pressure_angle', 20, ...
        'spiral_angle', 35, ...
        'face_width', 40, ...
        'shaft_angle', 90);
    
    % 2. 生成齿面散点
    fprintf('\n步骤2: 生成齿面散点...\n');
    
    % 方法1: 基于切削原理生成
    points_per_tooth = 400;
    cutting_points = CuttingTheory.generate_complete_gear(gear, points_per_tooth);
    
    % 方法2: 基于精确数学模型生成
    [precise_points, normals] = ToothSurfaceModel.generate_precise_surface(gear, 30, 30);
    
    % 3. 可视化结果
    fprintf('\n步骤3: 可视化齿面点云...\n');
    visualize_gear_points(gear, cutting_points, precise_points, normals);
    
    % 4. 分析接触特性
    fprintf('\n步骤4: 分析齿面接触特性...\n');
    mating_gear = SpiralBevelGear('teeth_number', 9); % 配对小齿轮
    [contact_path, transmission_error] = ToothSurfaceModel.analyze_contact(...
        gear, precise_points, normals, mating_gear);
    
    % 5. 保存数据
    fprintf('\n步骤5: 保存点云数据...\n');
    save_point_cloud_data(gear, cutting_points, precise_points, contact_path);
    
    fprintf('\n=== 程序执行完成 ===\n');
end

function visualize_gear_points(gear, cutting_points, precise_points, normals)
    % 可视化齿面点云
    
    figure('Position', [100, 100, 1600, 1200]);
    
    % 子图1: 基于切削原理的点云
    subplot(2, 3, 1);
    scatter3(cutting_points(:,1), cutting_points(:,2), cutting_points(:,3), ...
        10, cutting_points(:,3), 'filled');
    colorbar;
    xlabel('X (mm)');
    ylabel('Y (mm)');
    zlabel('Z (mm)');
    title('基于切削原理的齿面点云');
    axis equal;
    grid on;
    
    % 子图2: 精确数学模型点云
    subplot(2, 3, 2);
    scatter3(precise_points(:,1), precise_points(:,2), precise_points(:,3), ...
        20, precise_points(:,3), 'filled');
    colorbar;
    xlabel('X (mm)');
    ylabel('Y (mm)');
    zlabel('Z (mm)');
    title('精确数学模型的齿面点云');
    axis equal;
    grid on;
    
    % 子图3: 法向量显示
    subplot(2, 3, 3);
    quiver3(precise_points(:,1), precise_points(:,2), precise_points(:,3), ...
            normals(:,1), normals(:,2), normals(:,3), 2, 'r');
    xlabel('X (mm)');
    ylabel('Y (mm)');
    zlabel('Z (mm)');
    title('齿面法向量');
    axis equal;
    grid on;
    
    % 子图4: 单个齿面细节
    subplot(2, 3, 4);
    % 提取第一个齿面的点
    points_per_tooth = size(precise_points, 1) / gear.teeth_number;
    first_tooth_points = precise_points(1:points_per_tooth, :);
    scatter3(first_tooth_points(:,1), first_tooth_points(:,2), first_tooth_points(:,3), ...
        30, first_tooth_points(:,3), 'filled');
    xlabel('X (mm)');
    ylabel('Y (mm)');
    zlabel('Z (mm)');
    title('单个齿面细节');
    axis equal;
    grid on;
    
    % 子图5: 齿面等高线
    subplot(2, 3, 5);
    % 重新网格化用于等高线
    [X_grid, Y_grid, Z_grid] = point_cloud_to_grid(precise_points, 50);
    contourf(X_grid, Y_grid, Z_grid, 20);
    colorbar;
    xlabel('X (mm)');
    ylabel('Y (mm)');
    title('齿面等高线');
    axis equal;
    
    % 子图6: 3D曲面显示
    subplot(2, 3, 6);
    surf(X_grid, Y_grid, Z_grid, 'EdgeColor', 'none', 'FaceAlpha', 0.8);
    xlabel('X (mm)');
    ylabel('Y (mm)');
    zlabel('Z (mm)');
    title('齿面3D曲面');
    axis equal;
    grid on;
    light;
    lighting gouraud;
    
    sgtitle('螺旋锥齿轮齿面散点分析与可视化');
end

function [X_grid, Y_grid, Z_grid] = point_cloud_to_grid(points, grid_size)
    % 将点云数据转换为网格数据
    
    x = points(:,1);
    y = points(:,2);
    z = points(:,3);
    
    % 创建网格
    xi = linspace(min(x), max(x), grid_size);
    yi = linspace(min(y), max(y), grid_size);
    [X_grid, Y_grid] = meshgrid(xi, yi);
    
    % 网格化Z坐标
    Z_grid = griddata(x, y, z, X_grid, Y_grid, 'natural');
end

function save_point_cloud_data(gear, cutting_points, precise_points, contact_path)
    % 保存点云数据到文件
    
    timestamp = datestr(now, 'yyyymmdd_HHMMSS');
    filename = sprintf('spiral_bevel_gear_%s.mat', timestamp);
    
    % 保存数据
    save(filename, 'gear', 'cutting_points', 'precise_points', 'contact_path');
    
    % 保存为CSV格式(用于其他软件)
    csvwrite('cutting_points.csv', cutting_points);
    csvwrite('precise_points.csv', precise_points);
    csvwrite('contact_path.csv', contact_path);
    
    fprintf('点云数据已保存:\n');
    fprintf('  MATLAB格式: %s\n', filename);
    fprintf('  CSV格式: cutting_points.csv, precise_points.csv, contact_path.csv\n');
    
    % 生成报告
    generate_analysis_report(gear, cutting_points, precise_points);
end

function generate_analysis_report(gear, cutting_points, precise_points)
    % 生成分析报告
    
    fprintf('\n=== 齿面点云分析报告 ===\n');
    fprintf('齿轮参数:\n');
    fprintf('  齿数: %d\n', gear.teeth_number);
    fprintf('  模数: %.2f mm\n', gear.module);
    fprintf('  压力角: %.1f°\n', gear.pressure_angle);
    fprintf('  螺旋角: %.1f°\n', gear.spiral_angle);
    fprintf('  齿宽: %.1f mm\n', gear.face_width);
    
    fprintf('\n点云统计:\n');
    fprintf('  切削原理点云: %d 个点\n', size(cutting_points, 1));
    fprintf('  精确模型点云: %d 个点\n', size(precise_points, 1));
    
    % 计算点云特性
    cutting_range = [min(cutting_points); max(cutting_points)];
    precise_range = [min(precise_points); max(precise_points)];
    
    fprintf('\n坐标范围 (切削原理点云):\n');
    fprintf('  X: [%.2f, %.2f] mm\n', cutting_range(1,1), cutting_range(2,1));
    fprintf('  Y: [%.2f, %.2f] mm\n', cutting_range(1,2), cutting_range(2,2));
    fprintf('  Z: [%.2f, %.2f] mm\n', cutting_range(1,3), cutting_range(2,3));
    
    fprintf('\n坐标范围 (精确模型点云):\n');
    fprintf('  X: [%.2f, %.2f] mm\n', precise_range(1,1), precise_range(2,1));
    fprintf('  Y: [%.2f, %.2f] mm\n', precise_range(1,2), precise_range(2,2));
    fprintf('  Z: [%.2f, %.2f] mm\n', precise_range(1,3), precise_range(2,3));
end

% 运行主程序
main_spiral_bevel_gear();

5. 高级分析与优化

function advanced_analysis()
    % 高级分析功能
    
    fprintf('=== 螺旋锥齿轮高级分析 ===\n\n');
    
    % 创建齿轮实例
    gear = SpiralBevelGear('teeth_number', 41, 'module', 5, 'spiral_angle', 35);
    
    % 1. 不同参数的影响分析
    analyze_parameter_effects(gear);
    
    % 2. 齿面质量评估
    evaluate_surface_quality(gear);
    
    % 3. 生成制造数据
    generate_manufacturing_data(gear);
end

function analyze_parameter_effects(gear)
    % 分析不同参数对齿面形状的影响
    
    fprintf('分析参数影响...\n');
    
    % 测试不同的螺旋角
    spiral_angles = [25, 30, 35, 40];
    figure('Position', [200, 200, 1200, 800]);
    
    for i = 1:length(spiral_angles)
        test_gear = gear;
        test_gear.spiral_angle = spiral_angles(i);
        
        % 生成齿面点云
        [points, ~] = ToothSurfaceModel.generate_precise_surface(test_gear, 20, 20);
        
        subplot(2, 2, i);
        scatter3(points(:,1), points(:,2), points(:,3), 20, 'filled');
        title(sprintf('螺旋角 = %d°', spiral_angles(i)));
        xlabel('X'); ylabel('Y'); zlabel('Z');
        axis equal;
        grid on;
    end
    
    sgtitle('不同螺旋角对齿面形状的影响');
end

function evaluate_surface_quality(gear)
    % 评估齿面质量
    
    fprintf('评估齿面质量...\n');
    
    [points, normals] = ToothSurfaceModel.generate_precise_surface(gear, 50, 50);
    
    % 计算曲率
    curvature = calculate_surface_curvature(points, normals);
    
    % 计算粗糙度(模拟)
    roughness = calculate_surface_roughness(points);
    
    fprintf('齿面质量指标:\n');
    fprintf('  平均曲率: %.6f mm⁻¹\n', mean(curvature));
    fprintf('  曲率标准差: %.6f mm⁻¹\n', std(curvature));
    fprintf('  表面粗糙度: %.4f μm\n', roughness * 1000);
    
    % 可视化质量分布
    figure;
    scatter3(points(:,1), points(:,2), points(:,3), 30, curvature, 'filled');
    colorbar;
    title('齿面曲率分布');
    xlabel('X (mm)'); ylabel('Y (mm)'); zlabel('Z (mm)');
    axis equal;
end

function curvature = calculate_surface_curvature(points, normals)
    % 计算表面曲率(简化方法)
    
    num_points = size(points, 1);
    curvature = zeros(num_points, 1);
    
    for i = 1:num_points
        % 找到邻近点
        distances = vecnorm(points - points(i,:), 2, 2);
        [~, idx] = mink(distances, 10); % 取9个最近邻点
        
        % 使用邻近点计算局部曲率
        neighbor_points = points(idx(2:end), :); % 排除自身
        center = mean(neighbor_points, 1);
        
        % 简化的曲率计算
        curvature(i) = norm(points(i,:) - center);
    end
    
    curvature = curvature / max(curvature); % 归一化
end

function roughness = calculate_surface_roughness(points)
    % 计算表面粗糙度(模拟)
    
    % 对Z坐标进行统计分析
    z_values = points(:,3);
    
    % 去除趋势项(使用多项式拟合)
    x = points(:,1);
    p = polyfit(x, z_values, 3);
    trend = polyval(p, x);
    
    residuals = z_values - trend;
    roughness = std(residuals);
end

function generate_manufacturing_data(gear)
    % 生成制造数据
    
    fprintf('生成制造数据...\n');
    
    % 生成刀位轨迹数据
    [tool_paths, tool_orientations] = generate_tool_paths(gear);
    
    % 生成检测点数据
    inspection_points = generate_inspection_points(gear);
    
    % 保存制造数据
    save_manufacturing_data(gear, tool_paths, tool_orientations, inspection_points);
    
    fprintf('制造数据生成完成\n');
end

function [paths, orientations] = generate_tool_paths(gear)
    % 生成加工刀位轨迹
    
    num_passes = 10; % 加工道次
    paths = cell(num_passes, 1);
    orientations = cell(num_passes, 1);
    
    for pass = 1:num_passes
        % 生成当前道次的刀位点
        offset = (pass - 1) * 0.1; % 每道次偏移
        [points, normals] = ToothSurfaceModel.generate_precise_surface(gear, 20, 20);
        
        % 刀位点 = 齿面点 + 法向偏移
        tool_offset = 0.5; % 刀具半径补偿
        paths{pass} = points + tool_offset * normals;
        orientations{pass} = normals; % 刀具方向与法向一致
    end
end

function inspection_points = generate_inspection_points(gear)
    % 生成检测点
    
    % 在关键位置生成检测点
    u_test = [0.1, 0.3, 0.5, 0.7, 0.9] * 2*pi/gear.teeth_number;
    v_test = [-0.4, -0.2, 0, 0.2, 0.4] * gear.face_width/2;
    
    inspection_points = [];
    for u = u_test
        for v = v_test
            point = ToothSurfaceModel.surface_point(gear, u, v);
            inspection_points = [inspection_points; point];
        end
    end
end

function save_manufacturing_data(gear, tool_paths, tool_orientations, inspection_points)
    % 保存制造数据
    
    timestamp = datestr(now, 'yyyymmdd_HHMMSS');
    filename = sprintf('manufacturing_data_%s.mat', timestamp);
    
    save(filename, 'gear', 'tool_paths', 'tool_orientations', 'inspection_points');
    
    % 保存为CNC程序格式(简化)
    generate_g_code(gear, tool_paths, tool_orientations);
    
    fprintf('制造数据已保存: %s\n', filename);
end

function generate_g_code(gear, tool_paths, tool_orientations)
    % 生成简化的G代码
    
    gcode_filename = 'spiral_bevel_gear.cnc';
    fid = fopen(gcode_filename, 'w');
    
    fprintf(fid, '%%\n');
    fprintf(fid, 'O1000 (SPIRAL BEVEL GEAR CUTTING)\n');
    fprintf(fid, 'G90 G54 G40 G49 G80\n');
    fprintf(fid, 'G91 G28 Z0\n');
    fprintf(fid, 'G90\n\n');
    
    % 刀位轨迹
    for pass = 1:length(tool_paths)
        fprintf(fid, '(PASS %d)\n', pass);
        points = tool_paths{pass};
        
        for i = 1:size(points, 1)
            fprintf(fid, 'G01 X%.3f Y%.3f Z%.3f\n', ...
                points(i,1), points(i,2), points(i,3));
        end
    end
    
    fprintf(fid, 'M30\n');
    fprintf(fid, '%%\n');
    fclose(fid);
    
    fprintf('G代码已生成: %s\n', gcode_filename);
end

% 运行高级分析
advanced_analysis();

参考代码 用于根据切削原理生成螺旋锥齿轮齿面散点 www.youwenfan.com/contentcnl/80057.html

总结

主要特点:

  1. 基于真实切削原理:模拟实际的齿轮加工过程
  2. 双方法生成:切削原理方法 + 精确数学模型方法
  3. 完整的参数化设计:支持各种齿轮参数的灵活设置
  4. 高级分析功能:接触分析、质量评估、曲率计算
  5. 制造数据输出:刀位轨迹、检测点、G代码生成

技术优势:

  • 物理真实性:基于真实的切削过程和机床运动学
  • 数学精确性:采用微分几何和啮合理论
  • 工程实用性:直接输出可用于制造和检测的数据
  • 可视化分析:多种图形化展示和分析工具

应用价值:

  • 为齿轮设计和制造提供数字化工具
  • 支持齿面优化和接触分析
  • 生成可直接用于CNC加工的数据
  • 为齿轮检测提供理论依据
posted @ 2025-11-10 10:04  荒川之主  阅读(27)  评论(0)    收藏  举报