matlab实现自适应动态规划算法
自适应动态规划(Adaptive Dynamic Programming, ADP)是一种结合了动态规划和机器学习技术的算法,用于解决复杂的决策和控制问题。ADP算法通常包括两个主要部分:Actor(执行者)和Critic(评估者)。Actor负责选择最优的动作,而Critic负责评估当前策略的性能。
基于Python的简单ADP算法实现示例,使用了深度学习库(如TensorFlow或PyTorch)来构建Actor和Critic网络。这个示例将展示如何在连续动作空间中实现ADP算法。
1. 环境设置
首先,我们需要定义一个环境,用于模拟决策过程。这里我们使用一个简单的连续动作空间环境。
import numpy as np
class SimpleEnvironment:
def __init__(self):
self.state = np.array([0.0])
self.goal = np.array([1.0])
self.max_steps = 100
def reset(self):
self.state = np.array([0.0])
self.steps = 0
return self.state
def step(self, action):
self.state += action
reward = -np.abs(self.state - self.goal)
self.steps += 1
done = self.steps >= self.max_steps or np.abs(self.state - self.goal) < 0.1
return self.state, reward, done, {}
2. Actor和Critic网络
接下来,我们定义Actor和Critic网络。Actor网络负责选择动作,Critic网络负责评估当前状态的价值。
import tensorflow as tf
from tensorflow.keras import layers
class ActorNetwork(tf.keras.Model):
def __init__(self, action_dim):
super(ActorNetwork, self).__init__()
self.fc1 = layers.Dense(64, activation='relu')
self.fc2 = layers.Dense(64, activation='relu')
self.output_layer = layers.Dense(action_dim, activation='tanh')
def call(self, state):
x = self.fc1(state)
x = self.fc2(x)
return self.output_layer(x)
class CriticNetwork(tf.keras.Model):
def __init__(self):
super(CriticNetwork, self).__init__()
self.fc1 = layers.Dense(64, activation='relu')
self.fc2 = layers.Dense(64, activation='relu')
self.output_layer = layers.Dense(1)
def call(self, state):
x = self.fc1(state)
x = self.fc2(x)
return self.output_layer(x)
参考代码 matlab实现自适应动态规划算法,二维轨迹跟踪,acor-critic网络
3. ADP算法实现
现在,我们实现ADP算法的核心部分,包括Actor和Critic的训练。
class ADP:
def __init__(self, env, actor_lr=0.001, critic_lr=0.001, gamma=0.99):
self.env = env
self.actor = ActorNetwork(action_dim=1)
self.critic = CriticNetwork()
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=actor_lr)
self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=critic_lr)
self.gamma = gamma
def train(self, episodes=1000):
for episode in range(episodes):
state = self.env.reset()
done = False
rewards = 0.0
while not done:
with tf.GradientTape() as actor_tape, tf.GradientTape() as critic_tape:
action = self.actor(state)
next_state, reward, done, _ = self.env.step(action)
rewards += reward
target_value = reward + self.gamma * self.critic(next_state) * (1 - done)
critic_loss = tf.reduce_mean(tf.square(target_value - self.critic(state)))
actor_loss = -tf.reduce_mean(self.critic(state) * action)
actor_gradients = actor_tape.gradient(actor_loss, self.actor.trainable_variables)
critic_gradients = critic_tape.gradient(critic_loss, self.critic.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_gradients, self.actor.trainable_variables))
self.critic_optimizer.apply_gradients(zip(critic_gradients, self.critic.trainable_variables))
state = next_state
if episode % 100 == 0:
print(f"Episode {episode}, Total Reward: {rewards}")
# 创建环境和ADP实例
env = SimpleEnvironment()
adp = ADP(env)
# 训练ADP
adp.train()
4. 测试和验证
训练完成后,我们可以测试ADP算法的性能,看看它是否能够成功地将状态推向目标。
def test_adp(env, adp, episodes=10):
for episode in range(episodes):
state = env.reset()
done = False
rewards = 0.0
while not done:
action = adp.actor(state)
state, reward, done, _ = env.step(action)
rewards += reward
print(f"Test Episode {episode}, Total Reward: {rewards}")
# 测试ADP
test_adp(env, adp)
总结
以上代码展示了如何使用Python和TensorFlow实现一个简单的自适应动态规划(ADP)算法。这个示例包括了环境的定义、Actor和Critic网络的构建以及ADP算法的训练和测试。通过调整网络结构和超参数,可以进一步优化算法的性能。

浙公网安备 33010602011771号