MATLAB中编写不平衡磁拉力方程

MATLAB中编写不平衡磁拉力方程通常涉及电机/发电机转子偏心时的电磁力计算。

1. 基本物理方程

不平衡磁拉力的径向分量可表示为:

% UMP基本方程
function [Fx, Fy] = calculateUMP(eccentricity, theta, params)
    % 输入参数:
    % eccentricity: 偏心距 [m]
    % theta: 转子位置角 [rad]
    % params: 包含电机参数的结构体
    
    % 电机基本参数
    R = params.R;          % 定子内半径 [m]
    L = params.L;          % 铁芯长度 [m]
    mu0 = 4*pi*1e-7;       % 真空磁导率
    B0 = params.B0;        % 额定气隙磁密幅值 [T]
    p = params.poles/2;    % 极对数
    
    % 气隙函数(考虑偏心)
    g0 = params.g0;        % 额定气隙长度 [m]
    g = g0 * (1 - eccentricity/g0 * cos(theta));
    
    % 麦克斯韦应力法计算磁拉力
    % 径向磁通密度(简化模型)
    Br = B0 * (g0./g) .* cos(p*theta);
    
    % 切向磁通密度(忽略或简化)
    Bt = 0; % 简化假设
    
    % 麦克斯韦应力张量
    sigma_r = (Br.^2 - Bt.^2)/(2*mu0);
    tau_rtheta = (Br.*Bt)/mu0;
    
    % 积分得到总力(离散化积分)
    phi = linspace(0, 2*pi, 360);
    dphi = phi(2) - phi(1);
    
    Fx = 0; Fy = 0;
    for i = 1:length(phi)
        g_local = g0 * (1 - eccentricity/g0 * cos(phi(i) - theta));
        Br_local = B0 * (g0/g_local) * cos(p*phi(i));
        sigma_r_local = (Br_local^2)/(2*mu0);
        
        Fx = Fx + R*L * sigma_r_local * cos(phi(i)) * dphi;
        Fy = Fy + R*L * sigma_r_local * sin(phi(i)) * dphi;
    end
    
    % 返回不平衡磁拉力分量
end

2. 完整的UMP计算类

classdef UnbalancedMagneticPull
    properties
        % 电机参数
        R           % 定子内半径 [m]
        L           % 铁芯长度 [m]
        g0          % 额定气隙 [m]
        poles       % 极数
        mu0 = 4*pi*1e-7
        
        % 磁路参数
        B0          % 气隙磁密基波幅值 [T]
        saturation_factor = 1.1  % 饱和系数
        
        % 计算参数
        integration_points = 360  % 积分点数
    end
    
    methods
        function obj = UnbalancedMagneticPull(params)
            % 构造函数
            if nargin > 0
                obj.R = params.R;
                obj.L = params.L;
                obj.g0 = params.g0;
                obj.poles = params.poles;
                if isfield(params, 'B0')
                    obj.B0 = params.B0;
                end
            end
        end
        
        function [Fx, Fy, radial_force] = computeUMP(obj, eccentricity, theta_rotor, theta_eccentricity)
            % 计算不平衡磁拉力
            % eccentricity: 偏心距 [m]
            % theta_rotor: 转子位置角 [rad]
            % theta_eccentricity: 偏心方向角 [rad]
            
            if eccentricity/obj.g0 > 0.5
                warning('偏心率超过50%,模型可能不准确');
            end
            
            % 离散化积分
            phi = linspace(0, 2*pi, obj.integration_points);
            dphi = phi(2) - phi(1);
            
            % 初始化力分量
            Fx = 0; Fy = 0;
            
            % 计算每个角度的力密度并积分
            for i = 1:length(phi)
                % 局部气隙长度(考虑静态偏心)
                g_local = obj.localAirGap(eccentricity, phi(i), ...
                    theta_rotor, theta_eccentricity);
                
                % 局部磁通密度
                Br_local = obj.localFluxDensity(g_local, phi(i), theta_rotor);
                
                % 麦克斯韦应力
                sigma_r = Br_local^2 / (2*obj.mu0);
                
                % 力密度积分
                Fx = Fx + obj.R * obj.L * sigma_r * cos(phi(i)) * dphi;
                Fy = Fy + obj.R * obj.L * sigma_r * sin(phi(i)) * dphi;
            end
            
            % 径向合力大小
            radial_force = sqrt(Fx^2 + Fy^2);
        end
        
        function g = localAirGap(obj, eccentricity, phi, theta_rotor, theta_eccentricity)
            % 计算局部气隙长度
            % 考虑静态偏心
            g = obj.g0 - eccentricity * cos(phi - theta_eccentricity);
            
            % 可选:添加动态偏心分量
            % g = obj.g0 - eccentricity * cos(phi - theta_rotor - theta_eccentricity);
            
            % 防止负气隙
            g = max(g, obj.g0 * 0.01);
        end
        
        function Br = localFluxDensity(obj, g_local, phi, theta_rotor)
            % 计算局部径向磁通密度
            % 简化模型:假设正弦分布
            
            % 极对数
            p = obj.poles / 2;
            
            % 气隙磁导
            lambda = 1/g_local;
            
            % MMF(磁动势)分布
            F = obj.B0 * obj.g0 * sqrt(2*obj.mu0); % 换算为MMF幅值
            
            % 基波磁通密度
            Br_base = F * lambda .* cos(p*(phi - theta_rotor));
            
            % 考虑饱和(简化)
            Br = Br_base / obj.saturation_factor;
        end
        
        function [Fx_series, Fy_series] = timeAnalysis(obj, eccentricity, ...
                time_vector, rotor_speed, theta_eccentricity)
            % 时域分析
            % rotor_speed: 转子转速 [rad/s]
            
            Fx_series = zeros(size(time_vector));
            Fy_series = zeros(size(time_vector));
            
            for i = 1:length(time_vector)
                theta_rotor = rotor_speed * time_vector(i);
                [Fx, Fy] = obj.computeUMP(eccentricity, theta_rotor, theta_eccentricity);
                Fx_series(i) = Fx;
                Fy_series(i) = Fy;
            end
        end
        
        function plotForceDistribution(obj, eccentricity, theta_rotor, theta_eccentricity)
            % 绘制力分布
            
            phi = linspace(0, 2*pi, obj.integration_points);
            force_density = zeros(size(phi));
            
            for i = 1:length(phi)
                g_local = obj.localAirGap(eccentricity, phi(i), ...
                    theta_rotor, theta_eccentricity);
                Br_local = obj.localFluxDensity(g_local, phi(i), theta_rotor);
                force_density(i) = Br_local^2 / (2*obj.mu0);
            end
            
            figure;
            polarplot(phi, force_density);
            title('磁拉力分布');
            rlim([0 max(force_density)*1.1]);
        end
    end
end

3. 使用示例

% 1. 定义电机参数
motor_params.R = 0.1;          % 定子内半径 0.1m
motor_params.L = 0.2;          % 铁芯长度 0.2m
motor_params.g0 = 0.002;       % 额定气隙 2mm
motor_params.poles = 4;        % 4极电机
motor_params.B0 = 0.8;         % 气隙磁密 0.8T

% 2. 创建UMP对象
ump = UnbalancedMagneticPull(motor_params);

% 3. 计算特定位置的UMP
eccentricity = 0.5e-3;         % 偏心0.5mm
theta_rotor = pi/6;            % 转子位置角30度
theta_eccentricity = 0;        % 偏心方向在0度方向

[Fx, Fy, Fr] = ump.computeUMP(eccentricity, theta_rotor, theta_eccentricity);

fprintf('UMP计算结果:\n');
fprintf('Fx = %.2f N\n', Fx);
fprintf('Fy = %.2f N\n', Fy);
fprintf('径向合力 = %.2f N\n', Fr);

% 4. 时域分析
time = 0:0.001:0.1;            % 0到0.1秒
rotor_speed = 2*pi*50;         % 50Hz转速

[Fx_t, Fy_t] = ump.timeAnalysis(eccentricity, time, rotor_speed, theta_eccentricity);

% 5. 绘制结果
figure;
subplot(2,1,1);
plot(time, Fx_t, 'b', 'LineWidth', 1.5);
hold on;
plot(time, Fy_t, 'r', 'LineWidth', 1.5);
xlabel('时间 [s]');
ylabel('不平衡磁拉力 [N]');
legend('Fx', 'Fy');
title('UMP时域波形');
grid on;

subplot(2,1,2);
plot(Fx_t, Fy_t);
xlabel('Fx [N]');
ylabel('Fy [N]');
title('UMP力轨迹');
axis equal;
grid on;

% 6. 绘制力分布
ump.plotForceDistribution(eccentricity, theta_rotor, theta_eccentricity);

4. 高级模型(考虑谐波)

function [Fx, Fy] = advancedUMP(eccentricity, params, harmonics)
    % 考虑谐波分量的UMP计算
    
    % 参数
    R = params.R;
    L = params.L;
    g0 = params.g0;
    p = params.poles/2;
    mu0 = 4*pi*1e-7;
    
    % 谐波次数和幅值
    if nargin < 3
        harmonics = struct('order', [1, 3, 5], 'amplitude', [1, 0.1, 0.05]);
    end
    
    % 计算UMP(考虑多个谐波)
    phi = linspace(0, 2*pi, 720);
    dphi = phi(2) - phi(1);
    
    Fx = 0; Fy = 0;
    
    for i = 1:length(phi)
        % 气隙函数
        g = g0 * (1 - eccentricity/g0 * cos(phi(i)));
        
        % 包含谐波的磁通密度
        Br = 0;
        for h = 1:length(harmonics.order)
            order = harmonics.order(h);
            amp = harmonics.amplitude(h);
            Br = Br + amp * cos(order * p * phi(i)) * (g0/g);
        end
        
        % 应力计算
        sigma = Br^2 / (2*mu0);
        
        % 积分
        Fx = Fx + R * L * sigma * cos(phi(i)) * dphi;
        Fy = Fy + R * L * sigma * sin(phi(i)) * dphi;
    end
end

参考代码 matlab编写的不平衡磁拉力方程 www.youwenfan.com/contentcnq/82421.html

框架提供了:

  1. 基本物理模型:基于麦克斯韦应力张量法
  2. 参数化设计:易于修改电机参数
  3. 时域分析:可观察UMP随时间变化
  4. 可视化工具:力分布和轨迹图

注意事项

  • 实际应用需考虑磁饱和、槽效应、涡流等因素
  • 对于大偏心情况,模型需进一步修正
  • 建议结合有限元分析进行验证
posted @ 2026-02-03 17:22  alloutlove  阅读(0)  评论(0)    收藏  举报