基于MATLAB的齿轮故障检测
一、系统架构设计
%% 主程序框架
clear; clc; close all;
%% 参数设置
fs = 10000; % 采样频率
t = 0:1/fs:1; % 时间向量
fault_types = {'healthy','crack','wear','broken'};
num_samples = 10; % 每类样本数量
%% 数据生成与加载
[data, labels] = generate_fault_data(fault_types, num_samples);
%% 信号预处理
denoised_data = preprocess(data);
%% 时域分析
time_features = extract_time_features(denoised_data);
%% 频域分析
freq_features = extract_freq_features(denoised_data, fs);
%% 特征融合与分类
diagnosis_result = diagnose(time_features, freq_features);
%% 可视化
plot_diagnosis_results(diagnosis_result);
二、核心模块实现
2.1 数据生成模块
function [data, labels] = generate_fault_data(types, num)
% 生成仿真故障数据
data = [];
labels = [];
for i = 1:numel(types)
type = types{i};
for j = 1:num
switch type
case 'healthy'
signal = generate_healthy_signal();
case 'crack'
signal = generate_crack_signal();
case 'wear'
signal = generate_wear_signal();
case 'broken'
signal = generate_broken_signal();
end
data = [data; signal];
labels = [labels; type];
end
end
end
function signal = generate_healthy_signal()
% 健康齿轮振动信号
f_mesh = 500; % 啮合频率
t = 0:1/fs:1;
signal = sin(2*pi*f_mesh*t) + 0.2*randn(size(t));
end
2.2 时域分析模块
function features = extract_time_features(signal)
% 时域特征提取
features.RMS = rms(signal);
features.Var = var(signal);
features.Skewness = skewness(signal);
features.Kurtosis = kurtosis(signal);
features.Impulse = sum(abs(signal(2:end)-signal(1:end-1)));
end
2.3 频域分析模块
function features = extract_freq_features(signal, fs)
% 频域特征提取
N = length(signal);
Y = fft(signal);
P2 = abs(Y/N);
P1 = P2(1:N/2+1);
P1(2:end-1) = 2*P1(2:end-1);
freq = fs*(0:N/2)/N;
% 关键频率成分提取
[peak_freq, peak_amp] = findpeaks(P1, 'SortStr', 'descend');
features.MainFreq = peak_freq(1);
features.SecondFreq = peak_freq(2);
features.PeakRatio = peak_amp(2)/peak_amp(1);
% 齿轮特征频率计算
z1 = 20; z2 = 50; % 齿数
f_mesh = (z2/(z1+z2)) * (fs/60); % 理论啮合频率
features.MeshFreq = f_mesh;
end
三、故障诊断算法
3.1 基于SVM的分类器
function result = diagnose(time_feat, freq_feat)
% 加载预训练模型
load('svm_model.mat'); % 包含训练好的分类器
% 特征融合
combined_feat = [time_feat, freq_feat];
% 预测
predicted_label = predict(svm_model, combined_feat);
result = predicted_label;
end
3.2 深度学习增强方案
layers = [ ...
sequenceInputLayer(6) % 输入层(6维特征)
lstmLayer(20) % LSTM层
fullyConnectedLayer(4) % 输出层(4类故障)
classificationLayer];
options = trainingOptions('adam',...
'MaxEpochs',50,...
'MiniBatchSize',32);
net = trainNetwork(XTrain,YTrain,layers,options);
四、关键分析技术
4.1 包络分析(冲击检测)
function envelope = envelope_analysis(signal)
% 包络线提取
[b,a] = butter(4,0.1);
filtered = filter(b,a,signal);
envelope = abs(hilbert(filtered));
end
4.2 小波包分解
function coeffs = wavelet_analysis(signal)
% 小波包分解
w = 'db4';
level = 4;
coeffs = wpdec(signal,level,w);
% 能量计算
energy = zeros(1,2^level);
for i = 1:2^level
energy(i) = sum(coeffs{i}.^2);
end
end
五、结果可视化
function plot_diagnosis_results(result)
% 混淆矩阵
cm = confusionmat(true_labels, result);
figure;
confusionchart(cm);
title('混淆矩阵');
% 特征分布对比
figure;
subplot(2,2,1);
boxplot([time_feat.healthy; time_feat.crack], 'Labels',{'Healthy','Crack'});
title('RMS分布');
subplot(2,2,2);
histogram(freq_feat.MainFreq, 'Normalization','pdf');
hold on;
line([mesh_freq,mesh_freq], ylim, 'r--');
title('啮合频率分布');
end
参考代码 Matlab用于齿轮故障检测 www.youwenfan.com/contentcnj/64408.html
六、性能优化
-
并行计算加速
% 使用parfor加速特征提取 parfor i = 1:numel(data) features(i) = extract_features(data(i)); end -
GPU加速方案
% 将数据转移至GPU gpu_data = gpuArray(data); % 使用cuDNN加速卷积网络 net = trainNetwork(XTrain,YTrain,layers,options,'ExecutionEnvironment','multi-gpu'); -
实时诊断优化
% 滑动窗口处理 window_size = 0.1; % 100ms窗口 overlap = 0.05; % 50%重叠 num_windows = floor((length(signal)-window_size)/overlap) +1;
该方法通过融合时域统计特征与频域频谱特征,结合机器学习算法,实现了对齿轮早期故障的有效检测。实际应用中建议根据具体设备参数调整特征提取算法,并通过实验验证优化模型参数。

浙公网安备 33010602011771号