topcoder srm 635 div1 [FINISHED]
problem1 link
首先枚举长度$L$。然后计算每一段长度$L$的差值最大公约数,然后差值除以最大公约数的结果可以作为当前段的关键字。然后不同段就可以比较他们的关键字,一样就是可以转化的。
problem2 link
对于那些一定要换的,把它们的places和cutoff拿出来,排个序。设它们为$p_{1},p_{2},..,p_{k},c_{1},c_{2},..,c_{k},$.最优的策略一定是从小到大挨个匹配。
如果到了某个位置不能匹配,比如$t$.那么需要从那些不需要交换的组里面拿出一个$(np,nc)$,这个需要满足$np\leq c_{t}$并且$nc$尽量大。
problem3 link
由于会有两个值不大于200,那么这两种最后会把整个序列最多分为401段。然后就是考虑把后面的两种也分成这么多段插进去就好。
第一个问题,假设$f[n][m][k]$表示第一个颜色和第二个颜色各有$n$和$m$个,分成$k$段的方案数。有一个性质是每一段两个是交错的,所以数量差不会超过1,那么可以得到转移方程:
(1)两个一样多组成一段:$n>0, m>0\rightarrow f[n][m][k]=2\sum_{i=1}^{min(n,m)}f[n-i][m-i][k-1]$
(2)第一个多一个组成一段:$n>0\rightarrow f[n][m][k]=\sum_{i=1}^{min(n-1,m)}f[n-1-i][m-i][k-1]$
(3)第二个多一个组成一段:$m>0\rightarrow f[n][m][k]=\sum_{i=1}^{min(n,m-1)}f[n-i][m-1-i][k-1]$
所以可以预处理对角线的前缀和可以在$O(nm(n+m))$的复杂度的计算完$f$
第二个问题,假设现在有$m$段,将后面两个插进去,有多少方法。这$m$段有三种情况,第一种第三个颜色的数量多一个,第二种第四个颜色的数量多一个,第三种两种颜色一样多。设第三种颜色第四种颜色的数量分别为$a,b,a\leq b$。这三种段的数量分别为$t,p,q$,那么有$t+p+q=m,p-t=b-a$。所以可以枚举$t$,然后$p,q$就可以都确定。令$X=a-t=b-p$,剩下的问题就是将$X$分成$m$个数字之和使得其中的$t+p$个数字可以为0,另外的$q$个数字不能为0.这等价于将$Y=X+t+p-m$个数字分成$m$个数字之和,每个数字大于等于0.答案为$C_{Y+m-1}^{m-1}=C_{X+t+p-m-m-1}^{m-1}=C_{a-t+t+p-m+m-1}^{m-1}=C_{a+p-1}^{m-1}$
所以$G(m,a,b)=\sum_{t=0}^{min(a,m)}C_{m}^{t}*C_{m-t}^{p}*2^{q}*C_{a+p-1}^{m-1}[q\geq 0]$
code for problem1
#include <cmath>
#include <vector>
class SimilarRatingGraph {
public:
double maxLength(const std::vector<int> &date,
const std::vector<int> &rating) {
int n = static_cast<int>(date.size());
auto Length = [&](int idx) {
double x = date[idx] - date[idx - 1];
double y = rating[idx] - rating[idx - 1];
return std::sqrt(x * x + y * y);
};
double result = 0;
for (int L = n - 1; L > 1; --L) {
int m = n - L + 1;
std::vector<std::pair<long long, long long>> sum(m);
for (int i = 0; i + L <= n; ++i) {
int g = 0;
for (int j = i + 1; j < i + L; ++j) {
g = Gcd(g, date[j] - date[j - 1]);
g = Gcd(g, std::abs(rating[j] - rating[j - 1]));
}
long long s0 = 0;
long long s1 = 0;
for (int j = i + 1; j < i + L; ++j) {
int t0 = (date[j] - date[j - 1]) / g;
int t1 = (rating[j] - rating[j - 1]) / g;
s0 = s0 * 100007 + t0 + (j - i);
s1 = s1 * 100007 + t1 + (j - i);
}
sum[i] = {s0, s1};
}
std::vector<double> sum_length(m, 0);
for (int i = 1; i < L; ++i) {
sum_length[0] += Length(i);
}
for (int i = 1; i < m; ++i) {
sum_length[i] = sum_length[i - 1] + Length(i + L - 1) - Length(i);
}
for (int i = 0; i < m; ++i) {
for (int j = i + 1; j < m; ++j) {
if (sum[i] == sum[j]) {
result = std::max(result, std::max(sum_length[i], sum_length[j]));
}
}
}
}
return result;
}
private:
int Gcd(int x, int y) { return y == 0 ? x : Gcd(y, x % y); }
};
code for problem2
#include <algorithm>
#include <vector>
class StoryFromTCO {
public:
int minimumChanges(const std::vector<int> &places,
const std::vector<int> &cutoff) {
std::vector<std::pair<std::pair<int, int>, bool>> good;
std::vector<int> bad_places;
std::vector<int> bad_cutoff;
for (size_t i = 0; i < places.size(); ++i) {
if (places[i] <= cutoff[i]) {
good.push_back({{places[i], cutoff[i]}, false});
} else {
bad_places.push_back(places[i]);
bad_cutoff.push_back(cutoff[i]);
}
}
auto Sort = [&](size_t idx) {
std::sort(bad_places.begin() + idx, bad_places.end());
std::sort(bad_cutoff.begin() + idx, bad_cutoff.end());
};
auto FindBest = [&](int cut) -> int {
int n = static_cast<int>(good.size());
int bst = -1;
for (int i = 0; i < n; ++i) {
if (!good[i].second && good[i].first.first <= cut &&
(bst == -1 || good[bst].first.second < good[i].first.second)) {
bst = i;
}
}
return bst;
};
Sort(0);
size_t idx = 0;
while (idx < bad_places.size()) {
if (bad_places[idx] <= bad_cutoff[idx]) {
++idx;
continue;
}
int bst = FindBest(bad_cutoff[idx]);
if (bst == -1) {
return -1;
}
bad_places.push_back(good[bst].first.first);
bad_cutoff.push_back(good[bst].first.second);
good[bst].second = true;
Sort(idx);
}
return static_cast<int>(bad_cutoff.size());
}
};
code for problem3
#include <algorithm>
#include <vector>
constexpr int kMAXN = 100000;
constexpr int kMAXM = 400;
constexpr int kMod = 1000000009;
long long fact[kMAXN + kMAXM + 1];
long long fact_inv[kMAXN + kMAXM + 1];
long long fpow[kMAXM + 2];
int f[kMAXM / 2 + 1][kMAXM / 2 + 1][kMAXM + 1];
class ColourHolic {
public:
int countSequences(std::vector<int> all) {
std::sort(all.begin(), all.end());
Initialize(all[2] + all[3] + all[0] + all[1]);
if (all[2] == 0) {
if (all[3] > 1) {
return 0;
} else {
return 1;
}
}
if (all[1] == 0) {
if (all[2] == all[3]) {
return 2;
} else if (all[2] + 1 == all[3]) {
return 1;
} else {
return 0;
}
}
auto Get = [&](int m, int mul) {
long long r = Compute(m + 1, all[2], all[3]);
r += Compute(m, all[2], all[3]) * 2;
r += Compute(m - 1, all[2], all[3]);
return static_cast<int>(r % kMod * mul % kMod);
};
if (all[0] == 0) {
return Get(all[1], 1);
}
int n = all[0];
int m = all[1];
f[0][1][1] = 1;
for (int i = 1; i <= n; ++i) {
f[i][i][1] = 2;
f[i][i - 1][1] = 1;
if (i + 1 <= m) {
f[i][i + 1][1] = 1;
}
}
int result = Get(1, f[n][m][1]);
for (int k = 2; k <= n + m; ++k) {
for (int i = 0; i <= n; ++i) {
int t = 1;
while (t <= m && i + t <= n) {
Add(f[i + t][t][k - 1], f[i + t - 1][t - 1][k - 1]);
++t;
}
}
for (int j = 1; j <= m; ++j) {
int t = 1;
while (t <= n && j + t <= m) {
Add(f[t][j + t][k - 1], f[t - 1][j + t - 1][k - 1]);
++t;
}
}
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
if (i > 0 && j > 0) {
Add(f[i][j][k], f[i - 1][j - 1][k - 1] * 2);
}
if (i > 0) {
Add(f[i][j][k], f[i - 1][j][k - 1]);
}
if (j > 0) {
Add(f[i][j][k], f[i][j - 1][k - 1]);
}
}
}
Add(result, Get(k, f[n][m][k]));
}
return result;
}
private:
void Add(int &x, int y) {
if (y >= kMod) {
y -= kMod;
}
x += y;
if (x >= kMod) {
x -= kMod;
}
}
long long Compute(int m, int a, int b) {
if (m == 0) {
return 0;
}
long long result = 0;
for (int t = 0; t <= a && t <= m; ++t) {
int p = b - a + t;
int q = m - p - t;
if (q < 0) {
continue;
}
result += C(m, t) * C(m - t, p) % kMod * fpow[q] % kMod *
C(a + p - 1, m - 1) % kMod;
}
return result % kMod;
}
void Initialize(int n) {
fact[0] = fact_inv[0] = 1;
fact[1] = fact_inv[1] = 1;
for (int i = 2; i <= n; ++i) {
fact[i] = fact[i - 1] * i % kMod;
fact_inv[i] = GetInv(fact[i]);
}
fpow[0] = 1;
for (int i = 1; i <= kMAXM + 1; ++i) {
fpow[i] = fpow[i - 1] * 2 % kMod;
}
}
long long C(int n, int m) {
if (n < m || m < 0) {
return 0;
}
return fact[n] * fact_inv[m] % kMod * fact_inv[n - m] % kMod;
}
long long GetInv(long long n) {
int m = kMod - 2;
long long r = 1;
while (m != 0) {
if ((m & 1) == 1) {
r = r * n % kMod;
}
m >>= 1;
n = n * n % kMod;
}
return r;
}
};