摘要:problem1 link 如果$k$是先手必胜那么$f(k)=1$否则$f(k)=0$ 通过对前面小的数字的计算可以发现:(1)$f(2k+1)=0$,(2)$f(2^{2k+1})=0$,(3)其他情况都是1 这个可以用数学归纳法证明 problem2 link 假设字符串的总长度为$n$ 首先 阅读全文
posted @ 2018-12-22 18:04 朝拜明天19891101 阅读 (81) 评论 (0) 编辑
摘要:problem1 link 首先使用两个端点颜色不同的边进行连通。答案是$n-1-m$。其中$m$是联通分量的个数。 problem2 link 首先构造一个最小割的模型。左边的$n_{1}$个点与源点相连,右边的$n_{2}$个点与汇点相连。每个中间点最少有$d+1$条边(有一条到汇点/源点的边) 阅读全文
posted @ 2018-12-15 14:21 朝拜明天19891101 阅读 (40) 评论 (0) 编辑
摘要:61 假设$\frac{\hat{m}}{\hat{n}}$是$\frac{m^{'}}{n^{'}}$,现在证明$\frac{\hat{m}}{\hat{n}}=\frac{m^{''}}{n^{''}}$ $\hat{m}\perp \hat{n},\frac{\hat{m}}{\hat{n}} 阅读全文
posted @ 2018-12-05 20:01 朝拜明天19891101 阅读 (64) 评论 (0) 编辑
摘要:problem1 link 首先枚举长度$L$。然后计算每一段长度$L$的差值最大公约数,然后差值除以最大公约数的结果可以作为当前段的关键字。然后不同段就可以比较他们的关键字,一样就是可以转化的。 problem2 link 对于那些一定要换的,把它们的places和cutoff拿出来,排个序。设它 阅读全文
posted @ 2018-11-22 18:19 朝拜明天19891101 阅读 (38) 评论 (0) 编辑
摘要:problem1 link 首先计算任意两点的距离。然后枚举选出的集合中的两个点,判断其他点是否可以即可。 problem2 link 假设字符串为$s$,长度为$n$。那么对于$SA$中的两个排名$SA_{i},SA_{i+1}$来说,应该尽量使得$s[SA_{i}]=s[SA_{i+1}]$。如 阅读全文
posted @ 2018-11-17 10:55 朝拜明天19891101 阅读 (118) 评论 (0) 编辑
摘要:46 (1)假设$j^{'}j-k^{'}k=Gcd(j,k)$,那么有$n^{j^{'}j}=n^{k^{'}k}n^{Gcd(j,k)}$,所以如果$n^{j^{'}j}=pm+1,n^{k^{'}k}=qm+1\rightarrow n^{Gcd(j,k)}=rm+1$ (2)假设$n=pq$ 阅读全文
posted @ 2018-11-12 18:09 朝拜明天19891101 阅读 (111) 评论 (0) 编辑
摘要:problem1 link 假设第$i$种出现的次数为$n_{i}$,总个数为$m$,那么排列数为$T=\frac{m!}{\prod_{i=1}^{26}(n_{i}!)}$ 然后计算回文的个数,只需要考虑前一半,得到个数为$R$,那么答案为$\frac{R}{T}$. 为了防止数字太大导致越界, 阅读全文
posted @ 2018-11-03 20:28 朝拜明天19891101 阅读 (76) 评论 (0) 编辑
摘要:31 $(b)mod(d)=1\rightarrow (b^{m})mod(d)=((kd+1)^{m})mod(d)=1$ 所以$((a_{m}a_{m-1}...a_{1}a_{0})_{b}=\sum_{k=0}^{m}a_{k}b^{k})mod(d)=\sum_{k=0}^{m}a_{k} 阅读全文
posted @ 2018-10-23 18:40 朝拜明天19891101 阅读 (118) 评论 (0) 编辑
摘要:16 $\frac{1}{e_{1}}=\frac{1}{2},\frac{1}{e_{1}}+\frac{1}{e_{2}}=\frac{5}{6},\frac{1}{e_{1}}+\frac{1}{e_{2}}+\frac{1}{e_{3}}=\frac{41}{42}$,由此猜测$\sum_{ 阅读全文
posted @ 2018-10-14 12:29 朝拜明天19891101 阅读 (112) 评论 (0) 编辑
摘要:problem1 link 对于数字$x$,检验每个满足$x=y*2^{t}$的$y$能否变成$x$即可。 problem2 link 如果起点到终点有一条长度为$L$的路径,那么就存在长度为$L+kR$的路径。其中$R$为从路径上某点转一圈再回到这一点的环的长度。 为了保证总是存在这个环,可以令这 阅读全文
posted @ 2018-09-28 16:25 朝拜明天19891101 阅读 (82) 评论 (0) 编辑
摘要:1 令$n=2^{a}3^{b}5^{c}$,它的因子个数为$k=(a+1)(b+1)(c+1)$。所以$k=1,2,3,4,5,6$时对应的$n=1,2,4,6,16,12$ 2 $Gcd(n,m)*Lcm(n,m)=n*m$ $Gcd((n)mod(m),m)*Lcm((n)mod(m),m)= 阅读全文
posted @ 2018-09-05 11:02 朝拜明天19891101 阅读 (113) 评论 (0) 编辑
摘要:problem1 link 计算每个格子向上的最大高度。然后每个格子同一行前面的格子以及当前格子作为选取的矩形的最后一行,计算面积并更新答案。 problem2 link 对于两个数据$(x_{1},y_{1}),(x_{2},y_{2})$,若先完成第一个再完成第二个,那么一开始的值$F$需要满足 阅读全文
posted @ 2018-09-02 10:43 朝拜明天19891101 阅读 (72) 评论 (0) 编辑
摘要:problem1 link 首先,如果一个数字的某一位是1但是$goal$的这一位不是1,那么这个数字是不用管它的。那么对于剩下的数字,只需要统计在$goal$为1的位上,这些数字对应位上也是1的数字个数。所有这样的位取最小值即可。这些数字就是要都被删除的。 problem2 link 首先暴力枚举 阅读全文
posted @ 2018-08-25 18:35 朝拜明天19891101 阅读 (67) 评论 (0) 编辑
摘要:46 (1)证明: 首先有$2n(n+1)=\left \lfloor 2n(n+1)+\frac{1}{2} \right \rfloor=\left \lfloor 2(n^{2}+n+\frac{1}{4}) \right \rfloor=\left \lfloor 2(n+\frac{1}{ 阅读全文
posted @ 2018-08-14 09:14 朝拜明天19891101 阅读 (134) 评论 (0) 编辑
摘要:problem1 link 首先按照type分类,同一类如果都是负数,那么取最大值,否则将所有的正数加起来作为这个type的价值。然后就是二维的背包。 problem2 link 从小到大将每个数字分到A或者B集合。设$f[i][j][m]$表示已经分配完前$i$个数字,A集合中分配了$j$个数字, 阅读全文
posted @ 2018-08-12 17:30 朝拜明天19891101 阅读 (75) 评论 (0) 编辑