随笔分类 - Hugging Face 博客
摘要:
一句话总结: SmolVLM 现已具备更强的视觉理解能力📺 SmolVLM2 标志着视频理解技术的根本性转变——从依赖海量计算资源的巨型模型,转向可在任何设备运行的轻量级模型。我们的目标很简单: 让视频理解技术从手机到服务器都能轻松部署。 我们同步发布三种规模的模型 (22 亿/5 亿/2.56
阅读全文

摘要:
简介 在本教程中,我将逐步指导如何将一个复杂的 ComfyUI 工作流转换为一个简单的 Gradio 应用程序,并讲解如何将其部署在 Hugging Face Spaces 的 ZeroGPU 无服务器架构上,这样可以让它以无服务器的方式免费部署和运行。在本教程中,我们将使用 Nathan Ship
阅读全文

摘要:
介绍 S2S (语音到语音) 是 Hugging Face 社区内存在的一个令人兴奋的新项目,它结合了多种先进的模型,创造出几乎天衣无缝的体验: 你输入语音,系统会用合成的声音进行回复。 该项目利用 Hugging Face 社区中的 Transformers 库提供的模型实现了流水话处理。该流程处
阅读全文

摘要:
自推测解码是一种新颖的文本生成方法,它结合了推测解码 (Speculative Decoding) 的优势和大语言模型 (LLM) 的提前退出 (Early Exit) 机制。该方法出自论文 LayerSkip: Enabling Early-Exit Inference and Self-Spec
阅读全文

摘要:Hugging Face 在 Git LFS 仓库 中存储了超过 30 PB 的模型、数据集和 Spaces。由于 Git 在文件级别进行存储和版本控制,任何文件的修改都需要重新上传整个文件。这在 Hub 上会产生高昂的成本,因为平均每个 Parquet 和 CSV 文件大小在 200-300 MB
阅读全文
摘要:设计你自己的评估 prompt 这是 让 LLM 来评判 系列文章的第三篇,敬请关注系列文章: 基础概念 选择 LLM 评估模型 设计你自己的评估 prompt 评估你的评估结果 奖励模型相关内容 技巧与提示 通用 prompt 设计建议 我总结的互联网上通用 prompt 的通用设计原则如下: 任
阅读全文
摘要:创刊号 🎉 AI 领域的发展速度令人惊叹,回想一年前我们还在为生成正确手指数量的人像而苦苦挣扎的场景,恍如隔世 😂。 过去两年对开源模型和艺术创作工具而言具有里程碑意义。创意表达的 AI 工具从未像现在这般触手可及,然而这仅仅是冰山一角。让我们共同回顾 2024 年 AI 艺术领域的关键突破与创
阅读全文
摘要:
奖励模型相关内容 这是 让 LLM 来评判 系列文章的第五篇,敬请关注系列文章: 基础概念 选择 LLM 评估模型 设计你自己的评估 prompt 评估你的评估结果 奖励模型相关内容 技巧与提示 什么是奖励模型? 奖励模型通过学习人工标注的成对 prompt 数据来预测分数,优化目标是对齐人类偏好。
阅读全文

摘要:欢迎来到 Physical AI 的最前沿!Seeed x LeRobot 具身智能黑客松现邀请所有对在机器人领域训练模仿学习策略,并实时进行推理部署感兴趣的人,共同创造具有影响力的创新解决方案。在这里,你可以与志同道合的开发者一起实践前沿机器人技术,获取免费硬件支持和独家资源,并快速在真实机器人系
阅读全文
摘要:
评估你的评估结果 这是 让 LLM 来评判 系列文章的第三篇,敬请关注系列文章: 基础概念 选择 LLM 评估模型 设计你自己的评估 prompt 评估你的评估结果 奖励模型相关内容 技巧与提示 在生产中或大规模使用 LLM 评估模型之前,你需要先评估它在目标任务的表现效果如何,确保它的评分跟期望的
阅读全文

摘要:
基础概念 这是 让 LLM 来评判 系列文章的第一篇,敬请关注系列文章: 基础概念 选择 LLM 评估模型 设计你自己的评估 prompt 评估你的评估结果 奖励模型相关内容 技巧与提示 什么是评估模型? 评估模型 (Judge models) 是一种 用于评估其他神经网络的神经网络。大多数情况下它
阅读全文

摘要:基础概念 这是 让 LLM 来评判 系列文章的第一篇,敬请关注系列文章: 基础概念 选择 LLM 评估模型 设计你自己的评估 prompt 评估你的评估结果 奖励模型相关内容 技巧与提示 什么是评估模型? 评估模型 (Judge models) 是一种 用于评估其他神经网络的神经网络。大多数情况下它
阅读全文
摘要:
一些评估测试集 这是 自动评估基准 系列文章的第三篇,敬请关注系列文章: 基础概念 设计你的自动评估任务 一些评估测试集 技巧与提示 如果你感兴趣的任务已经得到充分研究,很可能评估数据集已经存在了。 下面列出了一些近年来开发构建的评估数据集。需要注意的是: 大部分数据集有些 “过时”,因为它们是在
阅读全文

摘要:
过去几年,大语言模型 (LLM) 的进程主要由训练时计算缩放主导。尽管这种范式已被证明非常有效,但预训练更大模型所需的资源变得异常昂贵,数十亿美元的集群已经出现。这一趋势引发了人们对其互补方法的浓厚兴趣, 即推理时计算缩放。推理时计算缩放无需日趋庞大的预训练预算,而是采用动态推理策略,让模型能够对难
阅读全文

摘要:过去几年,大语言模型 (LLM) 的进程主要由训练时计算缩放主导。尽管这种范式已被证明非常有效,但预训练更大模型所需的资源变得异常昂贵,数十亿美元的集群已经出现。这一趋势引发了人们对其互补方法的浓厚兴趣, 即推理时计算缩放。推理时计算缩放无需日趋庞大的预训练预算,而是采用动态推理策略,让模型能够对难
阅读全文
摘要:
设计你的自动评估任务 这是 自动评估基准 系列文章的第二篇,敬请关注系列文章: 基础概念 设计你的自动评估任务 一些评估测试集 技巧与提示 选择数据集 做评估时,你可以选择现有的数据集 (参考 一些评估数据集 页面) 作为测试集,也可以设计自己的数据集。有一点非常重要,请注意:评估的结果与评估的数据
阅读全文

摘要:
基础概念 这是 自动评估基准 系列文章的第一篇,敬请关注系列文章: 基础概念 设计你的自动评估任务 一些评估测试集 技巧与提示 注:本文内容与我写的 通用评估博客 存在部分重叠 什么是自动评估基准? 自动化基准测试通常按照以下方式工作:你希望了解你的模型在某些方面的表现。这些“某些方面”可以是一个明
阅读全文

摘要:我们很高兴迎来 Google 全新的视觉语言模型 PaliGemma 2,这是 PaliGemma 的一个新版本。与其前代产品一样,PaliGemma 2 使用强大的 SigLIP 进行视觉处理,但在文本解码部分升级到了最新的 Gemma 2。 模型规模和输入分辨率 PaliGemma 2 提供了新
阅读全文
摘要:
这次我们的 LeRobot 团队联合 @therobotstudio 和 @NepYope 打造了全新腱驱动(Tendon-driven)技术,以快、更准、更灵活的超凡表现,让机器人手部控制进入全新时代! 💡 当前该机器手的自由度:手部16,手臂 7。 💵 机器手价格不超过450美元 最让人激动
阅读全文

摘要:
人工标注员 这是 人工评估 系列文章的第二篇《人工标注员》,全系列包括: 基础概念 人工标注员 技巧与提示 推荐阅读 这篇综述 的第三章,介绍了许多数据标注质量管理的实践经验。如果你追求的是生产级的质量,并且具备实施条件,那么请继续阅读吧! 无论项目规模多大,一旦定义了具体的评估任务和打分细则,请注
阅读全文
