小波学习之二(单层一维离散小波变换DWT的Mallat算法C++实现优化)
在上回《小波学习之一》中,已经详细介绍了Mallat算法C++实现,效果还可以,但也存在一些问题,比如,代码难于理解,同时出现了边界问题。在此,本文将重构代码,采用新的方法解决这些问题,同时也加深对小波变换的理解。
        MATLAB作为经典的数学工具,分析其小波变换dwt和idwt实现后发现真的很经典,学习参考价值很高。下面结合南京理工大学 谭彩铭的《解读matlab之小波库函数》及MATLAB小波工具包中m文件的情况,作一个小结,最后用C++函数进行实现,并且编译调试OK。
        一、MATLAB上dwt函数的工作过程
        假设x=[x(1) x(2) x(3) x(4) x(5) x(6) x(7)],计算y=dwt(x,’db2’),其计算过程主要由三个部分组成:
1、边缘延拓,它主要由函数wextend完成。
仔细分析子程序部分,函数wextend的用法为y=wextend('1D','sym',x,3);这样得到的y=[ x(3) x(2) x(1) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(7) x(6) x(5)]
2、卷积运算,它主要由函数conv2完成。
仔细分析子程序部分,核心语句有z=conv2(y,Lo_D,'valid');这里设Lo_D=[h(1) h(2) h(3) h(4)]。
这2步的实现过程示意图如下:

3、最后就是下采样即隔点采样,其下采样是按照式a = z(2:2:length(z))进行的,高频低频部分均如此,项数为floor((7+4-1)/2)。
最后的dwt低频系数结果是[z(2) z(4) z(6) z(8) z(10)],高频系数求解过程和低频系数一样,在此不再赘述。
二、MATLAB上idwt函数的工作过程
1、上采样即隔点插0,dyadup(x,0)。
2、卷积运算,它也是最终由函数conv2完成。
3、抽取结果,wkeep1(x,s,'c')。
下面啥都不说show核心代码实现,欢迎讨论。
- /**
 - * @brief 边缘延拓
 - * @param typeId 延拓数据的类型,1D or 2D
 - * @param modeId 延拓方式:对称、周期
 - * @param in 输入数据
 - * @param inLen 输入数据的长度
 - * @param filterLen 小波基滤波器长度
 - * @param out 返回结果数组
 - * @return 返回结果数组长度
 - */
 - int SignalExtension(int typeId,
 - int modeId,
 - double *in,
 - int inLen,
 - int filterLen,
 - double out[])
 - {
 - if((NULL == in)||(NULL == out))
 - return -1;
 - if(0 != typeId) // 目前只支持一种模型
 - return -1;
 - //if(0 != modeId) // 目前只支持一种模型,信号对称拓延 'sym' or 'symh' Symmetric-padding (half-point): boundary value symmetric replication
 - // return -1;
 - if( inLen < filterLen ) // inLen should lager than or equal extendLen, otherwise no extension
 - return -1;
 - int i;
 - int extendLen = filterLen - 1;
 - if(0 == modeId) // 信号对称拓延
 - {
 - for(i=0; i<inLen; i++)
 - {
 - out[extendLen+i] = in[i];
 - }
 - for(i=0; i<extendLen; i++)
 - {
 - out[i] = out[2*extendLen - i - 1]; // 左边沿对称延拓
 - out[inLen + extendLen + i] = out[extendLen + inLen - i - 1]; // 右边沿对称延拓
 - }
 - return inLen + 2*extendLen;
 - }
 - else if(1 == modeId) // 信号周期拓延
 - {
 - for( i = 0; i < extendLen; i++ )
 - out[i] = in[inLen-extendLen+i];
 - for ( i = 0; i < inLen; i++ )
 - out[extendLen+i] = in[i];
 - return inLen + extendLen;
 - }
 - }
 
/**
 * @brief 边缘延拓
 * @param typeId 延拓数据的类型,1D or 2D
 * @param modeId 延拓方式:对称、周期
 * @param in 输入数据
 * @param inLen 输入数据的长度
 * @param filterLen 小波基滤波器长度
 * @param out 返回结果数组
 * @return 返回结果数组长度
 */
int SignalExtension(int typeId,
		int modeId,   
		double *in,   
		int inLen,    
		int filterLen, 
		double out[])  
{
    if((NULL == in)||(NULL == out))
        return -1;
    if(0 != typeId) // 目前只支持一种模型
    	return -1;
    //if(0 != modeId) // 目前只支持一种模型,信号对称拓延  'sym' or 'symh'  	Symmetric-padding (half-point): boundary value symmetric replication
    //	return -1;
    if( inLen < filterLen ) // inLen should lager than or equal extendLen, otherwise no extension
    	return -1;
    int i;
    int extendLen = filterLen - 1;
    if(0 == modeId) // 信号对称拓延
    {
        for(i=0; i<inLen; i++)
        {
        	out[extendLen+i] = in[i];
        }
        for(i=0; i<extendLen; i++)
        {
        	out[i]                     = out[2*extendLen - i - 1];       // 左边沿对称延拓
        	out[inLen + extendLen + i] = out[extendLen + inLen - i - 1]; // 右边沿对称延拓
        }
        return inLen + 2*extendLen;
    }
    else if(1 == modeId) // 信号周期拓延
    {
		for( i = 0; i < extendLen; i++ )
			out[i] = in[inLen-extendLen+i];
		for ( i = 0; i < inLen; i++ )
			out[extendLen+i] = in[i];
        return inLen + extendLen;
    }
}
- /**
 - * @brief 上采样 隔点插0
 - * @param data 输入数据指针
 - * @param n 输入数据长度
 - * @param result 返回结果数组
 - * @return 返回结果数组长度
 - */
 - int Upsampling(double* data, int n, double result[])
 - {
 - int i;
 - for( i = 0; i < n; i++ )
 - {
 - result[2*i] = data[i];
 - result[2*i+1] = 0;
 - }
 - return( 2*n );
 - }
 
/**
 * @brief 上采样  隔点插0
 * @param data 输入数据指针
 * @param n 输入数据长度
 * @param result 返回结果数组
 * @return 返回结果数组长度
 */
int Upsampling(double* data, int n, double result[])
{
	int i;
	for( i = 0; i < n; i++ )
	{
		result[2*i] = data[i];
		result[2*i+1] = 0;
	}
	return( 2*n );
}
- /**
 - * @brief 下采样 隔点采样
 - * @param data 输入数据指针
 - * @param n 输入数据长度
 - * @param result 返回结果数组
 - * @return 返回结果数组长度
 - */
 - int Downsampling(double* data, int n, double result[])
 - {
 - int i, m;
 - m = n/2;
 - for( i = 0; i < m; i++ )
 - result[i] = data[i*2 + 1];
 - return( m );
 - }
 
/**
 * @brief 下采样  隔点采样
 * @param data 输入数据指针
 * @param n 输入数据长度
 * @param result 返回结果数组
 * @return 返回结果数组长度
 */
int Downsampling(double* data, int n, double result[])
{
	int i, m;
	m = n/2;
	for( i = 0; i < m; i++ )
		result[i] = data[i*2 + 1];
	return( m );
}
- /**
 - * @brief 卷积运算
 - * @param shapeId 卷积结果处理方式
 - * @param double *inSignal, int signalLen, // 输入信号及其长度
 - * @param double *inFilter, int filterLen, // 输入滤波器及其长度
 - * @param double outConv[], int *convLen) // 输出卷积结果及其长度
 - * @return
 - */
 - void Conv1(int shapeId, // 卷积结果处理方式
 - double *inSignal, int signalLen, // 输入信号及其长度
 - double *inFilter, int filterLen, // 输入滤波器及其长度
 - double outConv[], int *convLen) // 输出卷积结果及其长度
 - {
 - if((NULL == inSignal)||(NULL == inFilter)||(NULL == outConv))
 - return;
 - int n,k,kmin,kmax,p;
 - if(0 == shapeId) // 对于MATLAB conv(...,'shape') -----full
 - {
 - *convLen = signalLen + filterLen - 1;
 - for (n = 0; n < *convLen; n++)
 - {
 - outConv[n] = 0;
 - kmin = (n >= filterLen - 1) ? n - (filterLen - 1) : 0;
 - kmax = (n < signalLen - 1) ? n : signalLen - 1;
 - for (k = kmin; k <= kmax; k++)
 - {
 - outConv[n] += inSignal[k] * inFilter[n - k];
 - }
 - }
 - }
 - else if(1 == shapeId) // 对于MATLAB conv(...,'shape') -----valid
 - {
 - *convLen = signalLen - filterLen + 1;
 - for (n = filterLen - 1; n < signalLen; n++)
 - {
 - p = n - filterLen + 1;
 - outConv[p] = 0;
 - kmin = (n >= filterLen - 1) ? n - (filterLen - 1) : 0;
 - kmax = (n < signalLen - 1) ? n : signalLen - 1;
 - for (k = kmin; k <= kmax; k++)
 - {
 - outConv[p] += inSignal[k] * inFilter[n - k];
 - }
 - }
 - }
 - else
 - return ;
 - }
 
/**
 * @brief 卷积运算
 * @param shapeId 卷积结果处理方式
 * @param double *inSignal, int signalLen, // 输入信号及其长度
 * @param double *inFilter, int filterLen, // 输入滤波器及其长度
 * @param double outConv[], int *convLen)   // 输出卷积结果及其长度
 * @return
 */
void Conv1(int shapeId,                  // 卷积结果处理方式
		double *inSignal, int signalLen, // 输入信号及其长度
		double *inFilter, int filterLen, // 输入滤波器及其长度
		double outConv[], int *convLen)   // 输出卷积结果及其长度
{
    if((NULL == inSignal)||(NULL == inFilter)||(NULL == outConv))
        return;
    int n,k,kmin,kmax,p;
    if(0 == shapeId)      // 对于MATLAB conv(...,'shape')  -----full
    {
    	*convLen = signalLen + filterLen - 1;
    	for (n = 0; n < *convLen; n++)
    	{
    		outConv[n] = 0;
    	    kmin = (n >= filterLen - 1) ? n - (filterLen - 1) : 0;
    	    kmax = (n < signalLen - 1) ? n : signalLen - 1;
    	    for (k = kmin; k <= kmax; k++)
    	    {
    	    	outConv[n] += inSignal[k] * inFilter[n - k];
    	    }
    	}
    }
    else if(1 == shapeId) // 对于MATLAB conv(...,'shape')  -----valid
    {
    	*convLen = signalLen - filterLen + 1;
    	for (n = filterLen - 1; n < signalLen; n++)
    	{
    		p = n - filterLen + 1;
    		outConv[p] = 0;
    	    kmin = (n >= filterLen - 1) ? n - (filterLen - 1) : 0;
    	    kmax = (n < signalLen - 1) ? n : signalLen - 1;
    	    for (k = kmin; k <= kmax; k++)
    	    {
    	    	outConv[p] += inSignal[k] * inFilter[n - k];
    	    }
    	}
    }
    else
    	return ;
}
- /**
 - * @brief 小波变换之分解
 - * @param sourceData 源数据
 - * @param dataLen 源数据长度
 - * @param db 过滤器类型
 - * @param cA 分解后的近似部分序列-低频部分
 - * @param cD 分解后的细节部分序列-高频部分
 - * @return 正常则返回分解后序列的数据长度,错误则返回-1
 - */
 - int Wavelet::Decomposition(double* sourceData, int dataLen, Filter db, double* cA, double* cD)
 - {
 - if(dataLen < 2)
 - return -1;
 - if((NULL == sourceData)||(NULL == cA)||(NULL == cD))
 - return -1;
 - m_db = db;
 - int filterLen = m_db.length;
 - int i, n;
 - int decLen = (dataLen+filterLen-1)/2;
 - int convLen = 0;
 - double extendData[dataLen+2*filterLen-2];
 - double convDataLow[dataLen+filterLen-1];
 - double convDataHigh[dataLen+filterLen-1];
 - /*
 - MATLAB上dwt函数的工作过程
 - 假设x=[x(1) x(2) x(3) x(4) x(5) x(6) x(7)],计算y=dwt(x,’db2’)。
 - 其计算过程主要由两个部分组成:
 - 1:边缘延拓,它主要由函数wextend完成。
 - 2:卷积运算,它主要由函数conv2完成。
 - 先看第一部分,仔细分析子程序部分,函数wextend的用法为y=wextend('1D','sym',x,3);
 - 这样得到的y=[ x(3) x(2) x(1) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(7) x(6) x(5)]
 - 在看第二部分,仔细分析子程序部分,核心语句有z=conv2(y,Lo_D,'valid');
 - 这里设Lo_D=[h(1) h(2) h(3) h(4)]。
 - 3:最后就是下采样,其下采样是按照式a = z(2:2:length(z))进行的,高频低频部分均如此,项数为floor((7+4-1)/2)。
 - */
 - // 1.边缘延拓
 - SignalExtension(0, 0 , sourceData, dataLen, filterLen, extendData);
 - // 2.卷积运算
 - Conv1(1, extendData, dataLen+2*filterLen-2, db.lowFilterDec, filterLen, convDataLow, &convLen);
 - Conv1(1, extendData, dataLen+2*filterLen-2, db.highFilterDec, filterLen, convDataHigh, &convLen);
 - // 3.下采样
 - Downsampling(convDataLow, dataLen + filterLen - 1, cA);
 - Downsampling(convDataHigh, dataLen + filterLen - 1, cD);
 - return decLen;
 - }
 
/**
 * @brief 小波变换之分解
 * @param sourceData 源数据
 * @param dataLen 源数据长度
 * @param db 过滤器类型
 * @param cA 分解后的近似部分序列-低频部分
 * @param cD 分解后的细节部分序列-高频部分
 * @return 正常则返回分解后序列的数据长度,错误则返回-1
 */
int Wavelet::Decomposition(double* sourceData, int dataLen, Filter db, double* cA, double* cD)
{
    if(dataLen < 2)
        return -1;
    if((NULL == sourceData)||(NULL == cA)||(NULL == cD))
        return -1;
    m_db = db;
    int filterLen = m_db.length;
    int i, n;
    int decLen = (dataLen+filterLen-1)/2;
    int convLen = 0;
    double extendData[dataLen+2*filterLen-2];
    double convDataLow[dataLen+filterLen-1];
    double convDataHigh[dataLen+filterLen-1];
/*
MATLAB上dwt函数的工作过程
假设x=[x(1) x(2) x(3) x(4) x(5) x(6) x(7)],计算y=dwt(x,’db2’)。
其计算过程主要由两个部分组成:
1:边缘延拓,它主要由函数wextend完成。
2:卷积运算,它主要由函数conv2完成。
先看第一部分,仔细分析子程序部分,函数wextend的用法为y=wextend('1D','sym',x,3);
这样得到的y=[ x(3) x(2) x(1) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(7) x(6) x(5)]
在看第二部分,仔细分析子程序部分,核心语句有z=conv2(y,Lo_D,'valid');
这里设Lo_D=[h(1) h(2) h(3) h(4)]。
3:最后就是下采样,其下采样是按照式a = z(2:2:length(z))进行的,高频低频部分均如此,项数为floor((7+4-1)/2)。
 */
    // 1.边缘延拓
    SignalExtension(0, 0 , sourceData, dataLen, filterLen, extendData);
    // 2.卷积运算
    Conv1(1, extendData, dataLen+2*filterLen-2, db.lowFilterDec, filterLen, convDataLow, &convLen);
    Conv1(1, extendData, dataLen+2*filterLen-2, db.highFilterDec, filterLen, convDataHigh, &convLen);
    // 3.下采样
    Downsampling(convDataLow, dataLen + filterLen - 1, cA);
    Downsampling(convDataHigh, dataLen + filterLen - 1, cD);
    return decLen;
}
- /**
 - * @brief 小波变换之重构
 - * @param cA 分解后的近似部分序列-低频部分
 - * @param cD 分解后的细节部分序列-高频部分
 - * @param cALength 输入数据长度
 - * @param RecLength 输入重构后的原始数据长度
 - * @param db 过滤器类型
 - * @param recData 重构后输出的数据
 - * @return 正常则返回重构数据长度,错误则返回-1
 - */
 - int Wavelet::Reconstruction(double *cA, double *cD, int cALength, int RecLength, Filter db, double* recData)
 - {
 - if((NULL == cA)||(NULL == cD)||(NULL == recData))
 - return -1;
 - m_db = db;
 - int filterLen = m_db.length;
 - int i,j;
 - int n,k,p;
 - int recLen = RecLength;
 - int convLen = 0;
 - double convDataLow[recLen+filterLen-1];
 - double convDataHigh[recLen+filterLen-1];
 - double cATemp[2*cALength];
 - double cDTemp[2*cALength];
 - memset(convDataLow, 0, (recLen+filterLen-1)*sizeof(double)); // 清0
 - memset(convDataHigh, 0, (recLen+filterLen-1)*sizeof(double)); // 清0
 - memset(cATemp, 0, 2*cALength*sizeof(double)); // 清0
 - memset(cDTemp, 0, 2*cALength*sizeof(double)); // 清0
 - // 1.隔点插0
 - Upsampling(cA, cALength, cATemp);
 - Upsampling(cD, cALength, cDTemp);
 - // 2.卷积运算
 - Conv1(0, cATemp, 2*cALength-1, db.lowFilterRec, filterLen ,convDataLow, &convLen);
 - convLen = 0;
 - Conv1(0, cDTemp, 2*cALength-1, db.highFilterRec, filterLen ,convDataHigh, &convLen);
 - // 3.抽取结果及求和——实现类似MATLAB中的wkeep1(s,len,'c')的功能
 - k = (convLen - recLen)/2;
 - for(i=0; i<recLen; i++)
 - {
 - recData[i] = convDataLow[i + k] + convDataHigh[i + k];
 - }
 - return recLen;
 - }
 
/**
 * @brief 小波变换之重构
 * @param cA 分解后的近似部分序列-低频部分
 * @param cD 分解后的细节部分序列-高频部分
 * @param cALength 输入数据长度
 * @param RecLength 输入重构后的原始数据长度
 * @param db 过滤器类型
 * @param recData 重构后输出的数据
 * @return 正常则返回重构数据长度,错误则返回-1
 */
int Wavelet::Reconstruction(double *cA, double *cD, int cALength, int RecLength, Filter db, double* recData)
{
    if((NULL == cA)||(NULL == cD)||(NULL == recData))
        return -1;
    m_db = db;
    int filterLen = m_db.length;
    int i,j;
    int n,k,p;
    int recLen = RecLength;
    int convLen = 0;
    double convDataLow[recLen+filterLen-1];
    double convDataHigh[recLen+filterLen-1];
    double cATemp[2*cALength];
    double cDTemp[2*cALength];
    memset(convDataLow, 0, (recLen+filterLen-1)*sizeof(double)); // 清0
    memset(convDataHigh, 0, (recLen+filterLen-1)*sizeof(double)); // 清0
    memset(cATemp, 0, 2*cALength*sizeof(double)); // 清0
    memset(cDTemp, 0, 2*cALength*sizeof(double)); // 清0
    // 1.隔点插0
    Upsampling(cA, cALength, cATemp);
    Upsampling(cD, cALength, cDTemp);
    // 2.卷积运算
    Conv1(0, cATemp, 2*cALength-1, db.lowFilterRec, filterLen ,convDataLow, &convLen);
    convLen = 0;
    Conv1(0, cDTemp, 2*cALength-1, db.highFilterRec, filterLen ,convDataHigh, &convLen);
    // 3.抽取结果及求和——实现类似MATLAB中的wkeep1(s,len,'c')的功能
    k = (convLen - recLen)/2;
    for(i=0; i<recLen; i++)
    {
    	recData[i] = convDataLow[i + k] + convDataHigh[i + k];
    }
	
    return recLen;
}
//----转自 www.cnblogs.com/IDoIUnderstand/)
                    
                
                
            
        
浙公网安备 33010602011771号