Powers Of Two 题解

考虑对 nn 进行二进制拆分,最终可以表示成 n=2a1+2a2+2apn =2^{a_1} + 2^{a_2} + \cdots 2^{a_p}ai0(1ip)a_i \geq 0(1 \leq i \leq p)

p>kp>kk>nk>n 时,显然无解。

p=kp=k 时,输出即为这 pp 个数,即 2a1,2a2,,2ap2^{a_1}, 2^{a_2}, \cdots, 2^{a_p}

p<kp<k 时,显然有 2x=2x1+2x12^x = 2^{x-1} + 2^{x-1},将每一个 ai1a_i \geq 1ii 变成两个 2ai12^{a_i-1}。即每次添加一个。

最终一定能变至 kk

#include <bits/stdc++.h>
using namespace std;

#define ll long long

const int N = 5e5 + 5;

ll n, k, cnt;

deque<ll> v; 

int main()
{
	scanf("%lld%lld", &n, &k);
	ll rn = n, cnt = 0;
	while (rn)
	{
		if (rn & 1)
		{
			v.push_front(cnt);
		}
		rn >>= 1;
		cnt++;
	}
	if (v.size() > k || k > n)
	{
		printf("NO\n");
		return 0;
	}
	printf("YES\n");
	while (v.size() < k)
	{
		int u = v.front();
		v.pop_front();
		if (u == 1)
		{
			v.push_back(u - 1);
			v.push_back(u - 1);
		}
		else
		{
			v.push_front(u - 1);
			v.push_front(u - 1);
		}
	}
	while (v.size())
	{
		int u = v.front();
		printf("%lld ", 1ll << u);
		v.pop_front();
	}
	printf("\n");
	return 0;
}
posted @ 2022-11-05 16:39  HappyBobb  阅读(29)  评论(0)    收藏  举报  来源