NETADMIN - Smart Network Administrator
有趣题。
容易发现答案可以二分,重点在于怎么写 check。
我们假设现在二分的是 ,我们要判断若对于每条边,只能经过 次, 个点是否可以全部到达 。容易发现这个东西可以转化为网络流,从源点 向 个特殊点连容量为 的边,原图上每条边的容量为 。由题知,汇点 ,我们只需要判断 的最大流是否为 即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <queue>
#include <climits>
using namespace std;
const int N = 2e5 + 5;
int t, n, m, k;
int e[N], h[N], ne[N], c[N], idx;
int S = 0, T = 1;
int d[N], cur[N];
int a[N];
int u[N], v[N];
inline void add(int x, int y, int z)
{
e[idx] = y, ne[idx] = h[x], c[idx] = z, h[x] = idx++;
}
inline bool bfs()
{
queue<int> q;
q.push(S);
for (int i = 0; i <= n; i++) d[i] = -1, cur[i] = -1;
d[S] = 0, cur[S] = h[S];
while (q.size())
{
int u = q.front();
q.pop();
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (d[j] == -1 && c[i] > 0)
{
d[j] = d[u] + 1;
cur[j] = h[j];
if (j == T) return 1;
q.push(j);
}
}
}
return 0;
}
inline int dfs(int u, int lim)
{
if (u == T) return lim;
int res = 0;
for (int i = cur[u]; ~i && res < lim; i = ne[i])
{
cur[u] = i;
int j = e[i];
if (d[j] == d[u] + 1 && c[i] > 0)
{
int p = dfs(j, min(lim - res, c[i]));
if (p == 0) d[j] = -1;
res += p;
c[i] -= p;
c[i ^ 1] += p;
}
}
return res;
}
inline int dinic()
{
int res = 0, p;
while (bfs())
{
while (p = dfs(S, INT_MAX)) res += p;
}
return res;
}
inline bool check(int g)
{
for (int i = 0; i < N; i++)
{
e[i] = h[i] = ne[i] = c[i] = 0;
h[i] = -1;
}
idx = 0;
for (int i = 1; i <= k; i++)
{
add(S, a[i], 1);
add(a[i], S, 0);
}
for (int i = 1; i <= m; i++)
{
add(u[i], v[i], g);
add(v[i], u[i], g);
}
int gg = dinic();
//printf("!: %d %d\n", g, gg);
return gg == k;
}
int main()
{
memset(h, -1, sizeof h);
scanf("%d", &t);
while (t--)
{
idx = 0;
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= k; i++) scanf("%d", &a[i]);
for (int i = 1; i <= m; i++)
{
scanf("%d%d", &u[i], &v[i]);
}
int l = 0, r = k + 1, ans = -1;
while (l <= r)
{
int mid = l + r >> 1;
if (check(mid)) ans = mid, r = mid - 1;
else l = mid + 1;
}
printf("%d\n", ans);
}
return 0;
}

浙公网安备 33010602011771号