完全P次方数 Perfect P-th Powers
容易发现当 时,由于 在 int 范围内,所以 。考虑从小到大枚举 并二分 ,判断是否是整数即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <cassert>
#include <string>
using namespace std;
using ll = long long;
int t;
ll n;
ll qpow(ll x, ll y)
{
ll res = 1, base = x;
bool isbigger = 0;
while (y)
{
if (y & 1LL)
{
res = res * base;
if (res > n || isbigger) return -1;
}
base = base * base;
if (base > n) isbigger = 1;
y >>= 1LL;
}
return res;
}
ll qpow2(ll x, ll y)
{
ll res = 1, base = x;
bool isbigger = 0;
while (y)
{
if (y & 1LL)
{
res = res * base;
if (res < n || isbigger) return -1;
}
base = base * base;
if (base < n) isbigger = 1;
y >>= 1LL;
}
return res;
}
int main()
{
while (scanf("%lld", &n) && n)
{
if (n >= 0)
{
for (ll i = 31; i >= 1; i--)
{
ll l = 1, r = n;
while (l <= r)
{
ll mid = l + r >> 1;
ll p = qpow(mid, i);
if (p == -1)
{
r = mid - 1;
}
else
{
if (p == n)
{
printf("%lld\n", i);
goto Ed;
}
l = mid + 1;
}
}
}
}
else
{
for (ll i = 31; i >= 1; i -= 2)
{
ll l = n, r = -1;
while (l <= r)
{
ll mid = l + r >> 1;
n = -n;
ll p = qpow(-mid, i);
if (p == -1 || -p < -n)
{
n = -n;
l = mid + 1;
}
else
{
n = -n;
if (-p == n)
{
printf("%lld\n", i);
goto Ed;
}
r = mid - 1;
}
}
}
}
Ed:;
}
return 0;
}

浙公网安备 33010602011771号