P4237 荒芜的海洋
我们先要保证奖赏尽量多,其次费用尽量小。应该可以看出,是一个最小费用最大流。如何建模?
考虑拆点。
每个岛屿分成一个入点一个出点。对于有雇佣兵的岛屿,源点向这个入点连容量为 ,费用为费用的边。对于怪兽的岛屿,连这个点的入点和出点,容量为 ,费用为打怪兽的价格。对于桥梁,连出点和入点,容量为 ,费用为经过的价格。对于有奖赏的岛,出点向汇点连边,容量为 ,费用为 的边。
最小费用最大流即可,注意桥梁是双向边。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <climits>
using namespace std;
#define int long long
const int N = 5e5 + 5;
int n, m, a, b;
int S = 0, T = 0;
int e[N], h[N], c[N], cs[N], ne[N], idx;
void add(int u, int v, int w, int cc)
{
//cout << "!!: " << u << " " << v << " " << w << " " << cc << "\n";
e[idx] = v, c[idx] = w, ne[idx] = h[u], cs[idx] = cc, h[u] = idx++;
e[idx] = u, c[idx] = 0, ne[idx] = h[v], cs[idx] = -cc, h[v] = idx++;
}
int dis[N], cur[N];
bool isin[N];
bool spfa()
{
for (int i = 0; i <= T; i++)
{
isin[i] = 0;
dis[i] = 5e9;
cur[i] = -1;
}
queue<int> q;
q.push(S);
dis[S] = 0, cur[S] = h[S];
while (q.size())
{
int u = q.front();
q.pop();
isin[u] = 0;
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (c[i] > 0 && dis[j] > dis[u] + cs[i])
{
//cout << j << "\n";
cur[j] = h[j];
dis[j] = dis[u] + cs[i];
if (!isin[j])
{
q.push(j);
isin[j] = 1;
}
}
}
}
//cout << dis[T] << " " << dis[N - 1] << "\n";
//system("pause");
return (dis[T] != 5e9);
}
int mincost = 0;
int dfs(int u, int lim)
{
if (u == T) return lim;
isin[u] = 1;
int sum = 0;
for (int i = cur[u]; ~i && sum < lim; i = ne[i])
{
cur[u] = i;
int j = e[i];
if (dis[j] == dis[u] + cs[i] && c[i] > 0 && !isin[j])
{
int p = dfs(j, min(c[i], lim - sum));
sum += p;
c[i] -= p;
c[i ^ 1] += p;
mincost += p * cs[i];
}
}
isin[u] = 0;
return sum;
}
int dinic()
{
int res = 0;
while (spfa())
{
while (int p = dfs(S, INT_MAX)) res += p;
}
return res;
}
signed main()
{
ios::sync_with_stdio(0), cin.tie(nullptr), cout.tie(nullptr);
memset(h, -1, sizeof h);
cin >> n >> m >> a >> b;
for (int i = 1; i <= n; i++)
{
int x;
cin >> x;
add(i, i + n, INT_MAX, x);
}
T = 2 * n + 1;
for (int i = 1; i <= m; i++)
{
int u, v, w;
cin >> u >> v >> w;
if (u == v) continue;
add(u + n, v, INT_MAX, w);
add(v + n, u, INT_MAX, w);
}
for (int i = 1; i <= a; i++)
{
int p, q;
cin >> q >> p;
add(S, p, 1, q);
}
int sum = 0LL;
for (int i = 1; i <= b; i++)
{
int k, q;
cin >> k >> q;
sum += k;
add(q + n, T, 1, 0);
}
int g = dinic();
if (g == b)
{
cout << "Yes\n" << sum - mincost << "\n";
}
else
{
cout << "No\n" << g << "\n";
}
return 0;
}

浙公网安备 33010602011771号