摘要:
DeploySharp:面向C#开发者的跨平台模型部署框架 DeploySharp是一款专为C#开发者设计的深度学习模型部署框架,支持OpenVINO和ONNX Runtime推理引擎,兼容YOLOv5-v12全系列模型以及Anomalib等主流模型。该框架采用模块化设计,通过核心命名空间DeploySharp集成模型加载、推理执行等功能,支持图像分类/检测/分割等任务。 阅读全文
posted @ 2025-10-02 22:53
椒颜皮皮虾
阅读(1139)
评论(3)
推荐(17)

最新的英特尔® 酷睿™ Ultra 处理器(第二代)让我们能够在台式机、移动设备和边缘中实现大多数 AI 体验,将 AI 加速提升到新水平,在 AI 时代为边缘计算提供动力。英特尔® 酷睿™ Ultra 处理器提供了一套全面的专为 AI 定制的集成计算引擎,包括 CPU、GPU 和 NPU,提供高达 99 总平台 TOPS。近期,YOLO系列模型发布了YOLOv12, 对 YOLO 框架进行了全面增强,特别注重集成注意力机制,同时又不牺牲 YOLO 模型所期望的实时处理能力,是 YOLO 系列的一次进化,突破了人工视觉的极限。本文中,我们将使用英特尔® 酷睿™ Ultra 处理器AI PC设备,结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2025.0 部署YOLOv11 和 YOLOv12 目标检测模型,并在AIPC设备上,进行速度测试。
NVIDIA ® TensorRT ™ 是一款用于高性能深度学习推理的 SDK,包含深度学习推理优化器和运行时,可为推理应用程序提供低延迟和高吞吐量。YOLOv10是清华大学研究人员近期提出的一种实时目标检测方法,通过消除NMS、优化模型架构和引入创新模块等策略,在保持高精度的同时显著降低了计算开销,为实时目标检测领域带来了新的突破。 在本文中,我们将演示如何使用NVIDIA TensorRT C++ API 部署YOLOv10目标检测模型,实现模型推理加速。
最近YOLO家族又添新成员:YOLOv10,YOLOv10 提出了一种一致的双任务方法,用于无nms训练的YOLOs,它同时带来了具有竞争力的性能和较低的推理延迟。此外,还介绍了整体效率-精度驱动的模型设计策略,从效率和精度两个角度对YOLOs的各个组成部分进行了全面优化,大大降低了计算开销,增强了性能。在本文中,我们将结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2024.1部署YOLOv10 目标检测模型
Blazeface模型是Google推出的一款专为移动GPU推理量身定制的轻量级且性能卓越的人脸检测器,BlazeFace 在旗舰移动设备上以200-1000 + FPS的速度运行。 在本文中,我们将使用OpenVINO™ C# API 部署 Blazeface 实现人脸检测。
YOLO-World是一个融合了实时目标检测与增强现实(AR)技术的创新平台,旨在将现实世界与数字世界无缝对接。该平台以YOLO(You Only Look Once)算法为核心,实现了对视频中物体的快速准确识别,并通过AR技术将虚拟元素与真实场景相结合,为用户带来沉浸式的交互体验。在本文中,我们将结合OpenVINO™ C# API 使用最新发布的OpenVINO™ 2024.0部署 YOLO-World实现实时开放词汇对象检测:
基于.NET Framework 4.8 开发的深度学习模型部署测试平台,提供了YOLO框架的主流系列模型,包括YOLOv8~v9,以及其系列下的Det、Seg、Pose、Obb、Cls等应用场景,同时支持图像与视频检测。模型部署引擎使用的是OpenVINO™、TensorRT、ONNX runtime以及OpenCV DNN,支持CPU、IGPU以及GPU多种设备推理。
浙公网安备 33010602011771号