摘要:
本文介绍了Python编程语言中关于for循环和if条件控制的一些基本使用。包含了单层循环的退出机制和多层循环的退出机制,使得我们在满足特定条件时,可以直接结束多层循环。 阅读全文
本文介绍了Python编程语言中关于for循环和if条件控制的一些基本使用。包含了单层循环的退出机制和多层循环的退出机制,使得我们在满足特定条件时,可以直接结束多层循环。 阅读全文
本文介绍了Python编程语言中关于for循环和if条件控制的一些基本使用。包含了单层循环的退出机制和多层循环的退出机制,使得我们在满足特定条件时,可以直接结束多层循环。 阅读全文
这篇文章介绍了新版Pypi上传Python编译后的whl包的操作流程,主要内容为登录设置双因子认证,以及获取API Token并使用token上传whl包的方法。 阅读全文
这里我提供了一个用于画拉氏图的Python脚本源代码,供大家免费使用。虽然现在也有很多免费的平台和工具可以用,但很多都是黑箱,有需要的开发者可以直接在这个脚本基础上二次开发,定制自己的拉氏图绘制方法。 阅读全文
本文介绍了一个在使用Cython进行Python高性能编程时有可能遇到的一个问题,就是找不到的对应的C语言的头文件,例如numpy中的一些头文件。解决思路就是先在本地找到相应的头文件路径,然后将其添加到编译器的环境变量中即可。 阅读全文
本文介绍了一个通过配置环境变量的方法,解决Win11系统下安装分子可视化软件VMD时出现的界面闪退问题。 阅读全文
本文介绍了一个在Win11系统下,通过WSL2+Docker+VSCode的方案搭建了一个mindspore-gpu的编程环境。这种方案既可以实现Linux系统编程以及部署的便捷性,又可以兼顾Windows系统强大的办公软件生态,甚至还可以借助Docker达到一定的软件可迁移性和可复制性。 阅读全文
随着硬件算力的发展,以及AI技术的日益增进,我们不仅可以借助深度学习框架来加速分子动力学模拟,以及降低分子模拟开发的门槛。还可以实现高通量模拟,使得用最小的开销并行的运行多个分子模拟成为可能。 阅读全文
本文是一个比较泛的分子体系控制器实现方案,因为MindSponge分子动力学模拟框架基于Python编程语言和MindSpore框架开发,因此在高度定制化的控制器实现上有先天的优势。我们可以在MindSponge中基于力对体系进行控制、基于坐标对体系进行控制,还能基于反应坐标对体系进行控制。 阅读全文
在一维空间下,我们要表示密度时可以给出一个二维的函数y=f(x),画出来是一条二维平面上的曲线。在二维空间下,我们要表示密度可以使用一个三维的函数z=f(x,y),画出来是一个三维空间的曲面。而三维空间下,密度表示是一个四维的函数:q=f(x,y,z),这个密度我们在三维空间已经没有办法用线或者面去表示,只能用体积元的颜色来表示。但是我们可以把这个密度投影到一个三维的等高曲面上,这个曲面就称为等高面。本文介绍了一个python中性能比较好的画等高面的工具:Plotly。 阅读全文
本文介绍了一款可用在Ubuntu操作系统下播放本地视频(如mp4格式)的软件:VLC,可用使用apt直接安装。 阅读全文
这篇文章主要介绍了mindspore深度学习框架中基于InsertGradientOf算子的进阶梯度操作。InsertGradientOf算子的功能跟此前介绍过的bprop功能有些类似,也是自定义梯度,但bprop更倾向于计算梯度,而InsertGradientOf算子更倾向于修改梯度,这里介绍了一些比较详细的测试案例。 阅读全文
本文介绍了在MindSponge分子动力学模拟框架先实现自定义Controller控制器的方法,通过调控体系中的原子坐标和原子速度等,来控制系综的参量。MindSponge分子模拟框架基于MindSpore深度学习框架开发而成,对于开发者尤其是深度学习开发者来说,非常的友好。 阅读全文
可以理解的是,概率密度函数,一般情况下都是连续的。但是对于采样或者随机试验来说,其实都是离散采样。大数定理通过取一个极限,将概率密度函数跟试验联系了起来。这篇文章主要介绍的是常用的几个概率密度函数的期望值和方差的计算,以及大数定理的基本概念。 阅读全文
本文的主要内容是一些统计力学中的基础的概率论知识,如密度函数、分布函数和贝叶斯定理的一些基本概念,主要作为一个简单的知识内容记录和分享,后续还有更多的同系列文章。 阅读全文
继上一篇文章从Torch的两个Issue中找到一些类似的问题之后,可以发现深度学习框架对于自定义反向传播函数中的传参还是比较依赖于必备参数,而不是关键字参数,MindSpore深度学习框架也是如此。但是我们可以使用一些临时的解决方案,对此问题进行一定程度上的规避,只要能够自定义的传参顺序传入关键字参数即可。 阅读全文