多项式

多项式

牛顿恒等式

定理

假设首一多项式 \(F = \sum_{i = 0}^na_ix^i\)\(n\) 个根为 \(\alpha_1, \dots, \alpha_n\),定义:

\[\begin{cases} \sigma_k = \sum_{S \subseteq \set{\alpha_1, \dots, \alpha_n}, |S| = k}\prod_{j \in S} j = (-1)^{k}a_{n - k}\\ s_k = \sum_{i = 1}^n \alpha_i^k\\ \end{cases} \]

有:

\(1 \le k \le n\),则

\[s_k - \sigma_1s_{k - 1} + \sigma_2s_{k - 2}- \dots + (-1)^{k - 1}\sigma_{k - 1}s_1 + (-1)^kk\sigma_k = 0 \tag{[1]} \]

\(k > n\),则

\[s_k - \sigma_1s_{k - 1} + \sigma_2s_{k - 2} + \dots + (-1)^n\sigma_ns_{k - n} = 0 \tag{[2]} \]

证明

对于 \(([2])\) 式,有

\[\begin{align} (2) &= \sum_{i = 1}^n\alpha_i^k - \sigma_1\alpha_i^{k - 1} + \dots + (-1)^n\sigma_na_i^{k - n}\\ &= \sum_{i = 1}^n \alpha_i^{k - n}(a_n\alpha_i^n + a_{n - 1}\alpha_i^{n - 1} + \dots + a_0)\\ &= 0 \end{align} \]

对于 \(([1])\) 式,则(参考自 brilliant

\(F\) 求导:

\[\sum_{i=1}^n(-1)^{n - i}\sigma_{n - i}ix^{i - 1} = F' = \sum_{i = 1}^n\frac{F}{(x - \alpha_i)} \tag{[3]} \]

根据容斥,假设要构造一个 \(n - 1\) 次首一多项式 \(F_i\),使得根集为 \((\bigcup_{j = 1}^n\set{\alpha_j}) - \set{\alpha_i}\),则它可以表示为 \(F_i = \sum_{j = 0}^{n - 1}a_{i, j}x^j\),其中 \(a_{i, j}\) 满足:

\[\begin{align} a_{i, n - 1} &= 1\\ a_{i, k} &= (-1)^{n - 1 - k}\sigma_{n - 1 - k} + \alpha_ia_{i, k + 1}\\ &= (-1)^{n - 1 - k}\sigma_{n - 1 - k} + \sum_{j = 1}^{n - 1 - k} (-1)^{n - 1 - k - j}\sigma_{n - 1 - k - j}\alpha_{i}^j\\ \end{align} \]

显然 \(F_i(x - \alpha_i) = F\),即 \(F_i = \frac{F}{x - \alpha_i}\)

求和,有:

\[\begin{align} \sum_{i = 1}^n\frac{F}{x - \alpha_i} =nx^{n - 1} + \sum_{j = 0}^{n - 2}x^j\bigg[n(-1)^{n - 1 - j}\sigma_{n - 1 - j} + s_{n - 1 - j} + \sum_{k = 1}^{n - 2 - j}(-1)^{n - 1 - j - k}\sigma_{n - 1 - j - k}s_k\bigg] \end{align} \tag{[4]} \]

联络 \(([3]), ([4])\),即得

\[(-1)^{n - i}\sigma_{n - i}i =n(-1)^{n - i}\sigma_{n - i} + s_{n - i} + \sum_{k = 1}^{n - 1 - i}(-1)^{n - i - k}\sigma_{n - i - k}s_k\\ \]

移项:

\[s_{n - i} + \sum_{k = 1}^{n - 1 - i}(-1)^{n - i - k}\sigma_{n - i - k}s_k + (-1)^{n - i}\sigma_{n - i}(n - i) = 0\\\\ s_i + \sum_{k = 1}^{i - 1}(-1)^{i - k}\sigma_{i - k}s_k + (-1)^ii\sigma_i = 0.\square\\ \]

posted @ 2023-12-20 21:33  cosf  阅读(35)  评论(0)    收藏  举报