实变函数复习 | 控制收敛定理 习题

2025-09-03 16:53:42 星期三

全都是简单的小应用,应付考试而已

例2 试证明下列命题:
(1) 设 \(E_1\supset E_2\supset\cdots\supset E_k\supset\cdots\), \(E=\bigcap_{k=1}^{\infty}E_k\), \(f\in L(E_k)\) \((k\in\mathbb{N})\), 则

\[\lim_{k\to\infty}\int_{E_k}f(x)\,dx=\int_Ef(x)\,dx. \]

Pf.
\(\int_{E_k} f(x) dx = \int_{\mathbb{R}^n} f(x) \cdot \chi_{E_k} dx\)
\(\int_E f(x) dx = \int_{\mathbb{R}^n} f(x) \cdot \chi_E dx\)

而且 \(\lim_{k \to \infty} f(x) \chi_{E_k}(x) = f(x) \chi_E(x)\) (因为 \(\forall x \in E = \bigcap_{k=1}^{\infty} E_k\)\(\chi_{E_k}(x) = 1 = \chi_E(x)\)\(\forall x \in E^c\) 由于 \(E = \bigcap_{k=1}^{\infty} E_k\) \(E_k\downarrow\)\(\exists N, \forall k>N\) \(x\notin E_k\) \(\Rightarrow \chi_{E_k}(x)=0=\chi_E(x)\) ,综上,\(\lim_{k \to \infty} \chi_{E_k}(x) = \chi_E(x)\)

而且 \(|f \cdot \chi_{E_k}| \leq |f \cdot \chi_E|\)\(|f \cdot \chi_E|\)可积,由控制收敛定理:

\[\lim_{k \to \infty} \int_{E_k} f(x) dx = \lim_{k \to \infty} \int_{\mathbb{R}^n} f(x) \cdot \chi_{E_k} dx = \int_{\mathbb{R}^n} f(x) \cdot \chi_E dx = \int_E f(x) dx \]

(2) 设 \(f_k\in L(E)\), 且 \(f_k(x)\leqslant f_{k+1}(x)\) \((k\in\mathbb{N})\). 若有

\[\lim_{k\to\infty}f_k(x)=f(x)\ (x\in E),\quad\left|\int_Ef_k(x)\,dx\right|\leqslant M\ (k\in\mathbb{N}),\]

\(f\in L(E)\), 且有

\[\lim_{k\to\infty}\int_Ef_k(x)\,dx=\int_Ef(x)\,dx. \]

Pf. 考虑\(\{f_n-f_1\}\) \(f_n-f_1\geq 0\) 由Levi定理

\[\lim_{k\to\infty}\int_Ef_k-f_1dx=\int_Ef-f_1dx \]

(3) 设 \(\lim_{k\to\infty}\int_E|f_k(x)-f(x)|\,dx=0\), \(g(x)\)\(E\) 上有界可测函数, 则

\[I=\lim_{k\to\infty}\int_E|f_k(x)g(x)-f(x)g(x)|\,dx=0.\]

Pf. \(|f_kg-fg|\leq|f_k-f|g|\to 0\) \((k\to\infty)\)

\[0\leq I\leq\lim_{k\to\infty}M\int_E|f_k-f|dx=0 \Rightarrow I=0 \]

(4) 设 \(\{f_k(x)\}\)\(E\) 上非负可积函数列, 且 \(f_k(x)\)\(E\) 上几乎处处收敛于 \(f(x)\equiv 0\). 若有

\[\int_{E} \max \{f_{1}(x), f_{2}(x), \cdots, f_{k}(x)\} \mathrm{d}x \leqslant M \quad (k=1,2,\cdots), \]

则 $$
\lim_{k \rightarrow \infty} \int_{E} f_{k}(x) \mathrm{d}x = 0.$$

posted @ 2025-09-03 20:15  夜秋子  阅读(11)  评论(0)    收藏  举报