Transformers--4-37-中文文档-十-
Transformers 4.37 中文文档(十)
特征提取器
原始文本:
huggingface.co/docs/transformers/v4.37.2/en/main_classes/feature_extractor
特征提取器负责为音频或视觉模型准备输入特征。这包括从序列中提取特征,例如,对音频文件进行预处理以生成 Log-Mel Spectrogram 特征,从图像中提取特征,例如,裁剪图像文件,但也包括填充、归一化和转换为 NumPy、PyTorch 和 TensorFlow 张量。
FeatureExtractionMixin
class transformers.FeatureExtractionMixin
( **kwargs )
这是一个特征提取混合类,用于为序列和图像特征提取器提供保存/加载功能。
from_pretrained
( pretrained_model_name_or_path: Union cache_dir: Union = None force_download: bool = False local_files_only: bool = False token: Union = None revision: str = 'main' **kwargs )
参数
-
pretrained_model_name_or_path
(str
或os.PathLike
) — 这可以是:-
一个字符串,预训练特征提取器的 模型 id,托管在 huggingface.co 上的模型存储库中。有效的模型 id 可以位于根级别,如
bert-base-uncased
,或者在用户或组织名称下进行命名空间,如dbmdz/bert-base-german-cased
。 -
一个指向包含使用 save_pretrained() 方法保存的特征提取器文件的 目录 的路径,例如
./my_model_directory/
。 -
一个保存的特征提取器 JSON 文件 的路径或 URL,例如
./my_model_directory/preprocessor_config.json
。
-
-
cache_dir
(str
或os.PathLike
, 可选) — 下载的预训练模型特征提取器应该缓存在其中的目录路径,如果不使用标准缓存。 -
force_download
(bool
, 可选, 默认为False
) — 是否强制(重新)下载特征提取器文件并覆盖缓存版本(如果存在)。 -
resume_download
(bool
, 可选, 默认为False
) — 是否删除接收不完整的文件。如果存在这样的文件,则尝试恢复下载。 -
proxies
(Dict[str, str]
, 可选) — 一个按协议或端点使用的代理服务器字典,例如,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
。代理将在每个请求中使用。 -
token
(str
或bool
, 可选) — 用作远程文件的 HTTP bearer 授权的令牌。如果为True
,或未指定,将使用运行huggingface-cli login
时生成的令牌(存储在~/.huggingface
中)。 -
revision
(str
, 可选, 默认为"main"
) — 要使用的特定模型版本。它可以是分支名称、标签名称或提交 id,因为我们在 huggingface.co 上使用基于 git 的系统来存储模型和其他工件,所以revision
可以是 git 允许的任何标识符。
从特征提取器实例化一种类型的 FeatureExtractionMixin,例如 SequenceFeatureExtractor 的派生类。
示例:
# We can't instantiate directly the base class *FeatureExtractionMixin* nor *SequenceFeatureExtractor* so let's show the examples on a
# derived class: *Wav2Vec2FeatureExtractor*
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-base-960h"
) # Download feature_extraction_config from huggingface.co and cache.
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"./test/saved_model/"
) # E.g. feature_extractor (or model) was saved using *save_pretrained('./test/saved_model/')*
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("./test/saved_model/preprocessor_config.json")
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False
)
assert feature_extractor.return_attention_mask is False
feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained(
"facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False, return_unused_kwargs=True
)
assert feature_extractor.return_attention_mask is False
assert unused_kwargs == {"foo": False}
save_pretrained
( save_directory: Union push_to_hub: bool = False **kwargs )
参数
-
save_directory
(str
或os.PathLike
) — 特征提取器 JSON 文件将保存在的目录(如果不存在将被创建)。 -
push_to_hub
(bool
, 可选, 默认为False
) — 在保存模型后是否将其推送到 Hugging Face 模型中心。您可以使用repo_id
指定要推送到的存储库(将默认为您的命名空间中的save_directory
的名称)。 -
kwargs
(Dict[str, Any]
, 可选) — 传递给 push_to_hub() 方法的额外关键字参数。
将 feature_extractor 对象保存到目录 save_directory
,以便可以使用 from_pretrained() 类方法重新加载。
SequenceFeatureExtractor
class transformers.SequenceFeatureExtractor
( feature_size: int sampling_rate: int padding_value: float **kwargs )
参数
-
feature_size
(int
) — 提取特征的特征维度。 -
sampling_rate
(int
) — 应以赫兹(Hz)表示的音频文件数字化的采样率。 -
padding_value
(float
) — 用于填充填充值/向量的值。
这是一个用于语音识别的通用特征提取类。
pad
( processed_features: Union padding: Union = True max_length: Optional = None truncation: bool = False pad_to_multiple_of: Optional = None return_attention_mask: Optional = None return_tensors: Union = None )
参数
-
processed_features
(BatchFeature、BatchFeature 列表、Dict[str, List[float]]
、Dict[str, List[List[float]]
或List[Dict[str, List[float]]
) — 处理后的输入。可以表示一个输入(BatchFeature 或Dict[str, List[float]]
)或一批输入值/向量(BatchFeature 列表、Dict[str, List[List[float]]] 或 List[Dict[str, List[float]]),因此您可以在预处理期间以及在 PyTorch Dataloader 收集函数中使用此方法。您可以使用张量(numpy 数组、PyTorch 张量或 TensorFlow 张量)代替
List[float]
,请参阅上面的返回类型说明。 -
padding
(bool
、str
或 PaddingStrategy, 可选, 默认为True
) — 选择一种策略来填充返回的序列(根据模型的填充方向和填充索引):-
True
或'longest'
: 填充到批次中最长的序列(如果只提供单个序列,则不填充)。 -
'max_length'
: 填充到指定的最大长度参数max_length
或模型的最大可接受输入长度(如果未提供该参数)。 -
False
或'do_not_pad'
(默认): 无填充(即,可以输出具有不同长度序列的批次)。
-
-
max_length
(int
, 可选) — 返回列表的最大长度和可选填充长度(见上文)。 -
截断
(bool
) — 激活截断以将输入序列长度超过max_length
的部分截断为max_length
。 -
pad_to_multiple_of
(int
, 可选) — 如果设置,将序列填充到提供的值的倍数。这对于在具有计算能力
>= 7.5
(Volta)的 NVIDIA 硬件上启用 Tensor Cores,或者在受益于序列长度为 128 的 TPUs 上使用特别有用。 -
return_attention_mask
(bool
, 可选) — 是否返回注意力掩码。如果保持默认值,将根据特定 feature_extractor 的默认值返回注意力掩码。什么是注意力掩码?
-
return_tensors
(str
或 TensorType, 可选) — 如果设置,将返回张量而不是 Python 整数列表。可接受的值为:-
'tf'
: 返回 TensorFlowtf.constant
对象。 -
'pt'
: 返回 PyTorchtorch.Tensor
对象。 -
'np'
: 返回 Numpynp.ndarray
对象。
-
填充输入值/输入向量或一批输入值/输入向量到预定义长度或批次中的最大序列长度。
填充侧(左/右)填充值在特征提取器级别定义(使用self.padding_side
,self.padding_value
)
如果传递的processed_features
是 numpy 数组、PyTorch 张量或 TensorFlow 张量的字典,则结果将使用相同类型,除非您使用return_tensors
提供不同的张量类型。在 PyTorch 张量的情况下,您将丢失张量的特定设备。
BatchFeature
class transformers.BatchFeature
( data: Optional = None tensor_type: Union = None )
参数
-
data
(dict
,可选)-由call/pad 方法返回的列表/数组/张量的字典('input_values','attention_mask'等)。 -
tensor_type
(Union[None, str, TensorType]
,可选)-您可以在此处提供一个 tensor_type,以在初始化时将整数列表转换为 PyTorch/TensorFlow/Numpy 张量。
保存 pad()和特征提取器特定的__call__
方法的输出。
此类派生自 Python 字典,可用作字典。
convert_to_tensors
( tensor_type: Union = None )
参数
tensor_type
(str
或 TensorType,可选)-要使用的张量类型。如果是str
,应该是枚举 TensorType 值之一。如果是None
,则不进行修改。
将内部内容转换为张量。
to
( *args **kwargs ) → export const metadata = 'undefined';BatchFeature
参数
-
args
(Tuple
)-将传递给张量的to(...)
函数。 -
kwargs
(Dict
,可选)-将传递给张量的to(...)
函数。
返回
BatchFeature
修改后的相同实例。
通过调用v.to(*args, **kwargs)
将所有值发送到设备(仅适用于 PyTorch)。这应该支持在不同的dtypes
中进行转换,并将BatchFeature
发送到不同的device
。
ImageFeatureExtractionMixin
class transformers.ImageFeatureExtractionMixin
( )
包含准备图像特征的实用程序的 Mixin。
center_crop
( image size ) → export const metadata = 'undefined';new_image
参数
-
image
(PIL.Image.Image
或np.ndarray
或torch.Tensor
,形状为(n_channels,height,width)或(height,width,n_channels))-要调整大小的图像。 -
size
(int
或Tuple[int, int]
)-要裁剪图像的大小。
返回
new_image
中心裁剪的PIL.Image.Image
或np.ndarray
或torch.Tensor
的形状:(n_channels,height,width)。
使用中心裁剪将image
裁剪到给定大小。请注意,如果图像太小而无法裁剪到给定大小,则将进行填充(因此返回的结果具有所需的大小)。
convert_rgb
( image )
参数
image
(PIL.Image.Image
)-要转换的图像。
将PIL.Image.Image
转换为 RGB 格式。
expand_dims
( image )
参数
image
(PIL.Image.Image
或np.ndarray
或torch.Tensor
)-要扩展的图像。
将二维image
扩展为三维。
flip_channel_order
( image )
参数
image
(PIL.Image.Image
或np.ndarray
或torch.Tensor
)- 要翻转颜色通道的图像。如果是np.ndarray
或torch.Tensor
,通道维度应该在前面。
将image
的通道顺序从 RGB 翻转为 BGR,或反之。请注意,如果image
是 PIL 图像,则这将触发将其转换为 NumPy 数组。
normalize
( image mean std rescale = False )
参数
-
image
(PIL.Image.Image
或np.ndarray
或torch.Tensor
)- 要归一化的图像。 -
mean
(List[float]
或np.ndarray
或torch.Tensor
)- 用于归一化的均值(每个通道)。 -
std
(List[float]
或np.ndarray
或torch.Tensor
)- 用于归一化的标准差(每个通道)。 -
rescale
(bool
,可选,默认为False
)- 是否将图像重新缩放为 0 到 1 之间。如果提供了 PIL 图像,缩放将自动发生。
使用mean
和std
对image
进行归一化。请注意,如果image
是 PIL 图像,则这将触发将其转换为 NumPy 数组。
rescale
( image: ndarray scale: Union )
按比例缩放 numpy 图像
resize
( image size resample = None default_to_square = True max_size = None ) → export const metadata = 'undefined';image
参数
-
image
(PIL.Image.Image
或np.ndarray
或torch.Tensor
)- 要调整大小的图像。 -
size
(int
或Tuple[int, int]
)- 用于调整图像大小的大小。如果size
是一个类似(h,w)的序列,输出大小将与此匹配。如果
size
是一个整数且default_to_square
为True
,则图像将被调整为(size,size)。如果size
是一个整数且default_to_square
为False
,则图像的较小边将与此数字匹配。即,如果高度>宽度,则图像将被调整为(size * height / width,size)。 -
resample
(int
,可选,默认为PILImageResampling.BILINEAR
)- 用于重采样的滤波器。 -
default_to_square
(bool
,可选,默认为True
)- 当size
是单个整数时如何转换size
。如果设置为True
,size
将被转换为正方形(size
,size
)。如果设置为False
,将复制torchvision.transforms.Resize
,支持仅调整最小边并提供可选的max_size
。 -
max_size
(int
,可选,默认为None
)- 调整大小后图像较长边的最大允许值:如果图像的较长边大于max_size
,则根据size
再次调整图像,使较长边等于max_size
。因此,size
可能会被覆盖,即较小的边可能会比size
短。仅在default_to_square
为False
时使用。
返回
图像
一个调整大小的PIL.Image.Image
。
调整image
的大小。强制将输入转换为 PIL.Image。
rotate
( image angle resample = None expand = 0 center = None translate = None fillcolor = None ) → export const metadata = 'undefined';image
参数
image
(PIL.Image.Image
或np.ndarray
或torch.Tensor
)- 要旋转的图像。如果是np.ndarray
或torch.Tensor
,将在旋转之前转换为PIL.Image.Image
。
返回
图像
一个旋转后的PIL.Image.Image
。
返回旋转后的image
的副本。此方法返回image
的副本,将其围绕中心逆时针旋转给定角度。
to_numpy_array
( image rescale = None channel_first = True )
参数
-
image
(PIL.Image.Image
或np.ndarray
或torch.Tensor
)- 要转换为 NumPy 数组的图像。 -
rescale
(bool
, optional) — 是否应用缩放因子(使像素值为 0 到 1 之间的浮点数)。如果图像是 PIL 图像或整数数组/张量,则默认为True
,否则为False
。 -
channel_first
(bool
, optional,默认为True
) — 是否重新排列图像的维度以将通道维度放在第一维。
将image
转换为 numpy 数组。可选择重新缩放并将通道维度作为第一维。
to_pil_image
( image rescale = None )
参数
-
image
(PIL.Image.Image
或numpy.ndarray
或torch.Tensor
) — 要转换为 PIL 图像格式的图像。 -
rescale
(bool
, optional) — 是否应用缩放因子(使像素值为 0 到 255 之间的整数)。如果图像类型为浮点类型,则默认为True
,否则为False
。
将image
转换为 PIL 图像。可选择重新缩放并在需要时将通道维度放回最后一个轴。
图像处理器
原始文本:
huggingface.co/docs/transformers/v4.37.2/en/main_classes/image_processor
图像处理器负责为视觉模型准备输入特征并后处理它们的输出。这包括诸如调整大小、归一化和转换为 PyTorch、TensorFlow、Flax 和 Numpy 张量等转换。它还可能包括模型特定的后处理,如将对数转换为分割掩模。
ImageProcessingMixin
class transformers.ImageProcessingMixin
( **kwargs )
这是一个用于为顺序和图像特征提取器提供保存/加载功能的图像处理器 mixin。
from_pretrained
( pretrained_model_name_or_path: Union cache_dir: Union = None force_download: bool = False local_files_only: bool = False token: Union = None revision: str = 'main' **kwargs )
参数
-
pretrained_model_name_or_path
(str
或os.PathLike
) — 这可以是:-
一个字符串,预训练的图像处理器的模型 ID,托管在 huggingface.co 上的模型存储库中。有效的模型 ID 可以位于根级别,如
bert-base-uncased
,或者在用户或组织名称下命名空间化,如dbmdz/bert-base-german-cased
。 -
一个目录的路径,其中包含使用 save_pretrained()方法保存的图像处理器文件,例如,
./my_model_directory/
。 -
一个保存的图像处理器 JSON 文件的路径或 URL,例如,
./my_model_directory/preprocessor_config.json
。
-
-
cache_dir
(str
或os.PathLike
, 可选) — 预下载的预训练模型图像处理器应该缓存在其中的目录路径,如果不使用标准缓存。 -
force_download
(bool
, 可选, 默认为False
) — 是否强制(重新)下载图像处理器文件并覆盖缓存版本(如果存在)。 -
resume_download
(bool
, 可选, 默认为False
) — 是否删除接收不完整的文件。如果存在这样的文件,尝试恢复下载。 -
proxies
(Dict[str, str]
, 可选) — 一个代理服务器字典,按协议或端点使用,例如,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}
。这些代理在每个请求中使用。 -
token
(str
或bool
, 可选) — 用作远程文件的 HTTP bearer 授权的令牌。如果为True
或未指定,将使用运行huggingface-cli login
时生成的令牌(存储在~/.huggingface
中)。 -
revision
(str
, 可选, 默认为"main"
) — 要使用的特定模型版本。它可以是分支名称、标签名称或提交 ID,因为我们使用基于 git 的系统在 huggingface.co 上存储模型和其他工件,所以revision
可以是 git 允许的任何标识符。
从图像处理器实例化一个类型的 ImageProcessingMixin。
示例:
# We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
# derived class: *CLIPImageProcessor*
image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32"
) # Download image_processing_config from huggingface.co and cache.
image_processor = CLIPImageProcessor.from_pretrained(
"./test/saved_model/"
) # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
image_processor = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32", do_normalize=False, foo=False
)
assert image_processor.do_normalize is False
image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
"openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
)
assert image_processor.do_normalize is False
assert unused_kwargs == {"foo": False}
save_pretrained
( save_directory: Union push_to_hub: bool = False **kwargs )
参数
-
save_directory
(str
或os.PathLike
) — 将保存图像处理器 JSON 文件的目录(如果不存在,将创建)。 -
push_to_hub
(bool
, 可选, 默认为False
) — 是否在保存后将模型推送到 Hugging Face 模型中心。您可以使用repo_id
指定要推送到的存储库(将默认为您的命名空间中的save_directory
名称)。 -
kwargs
(Dict[str, Any]
, 可选) — 传递给 push_to_hub()方法的额外关键字参数。
将图像处理器对象保存到目录save_directory
,以便可以使用 from_pretrained()类方法重新加载。
BatchFeature
class transformers.BatchFeature
( data: Optional = None tensor_type: Union = None )
参数
-
data
(dict
,可选)- 由call/pad 方法返回的列表/数组/张量的字典('input_values','attention_mask'等)。 -
tensor_type
(Union[None, str, TensorType]
,可选)- 您可以在此处给出一个 tensor_type,以在初始化时将整数列表转换为 PyTorch/TensorFlow/Numpy 张量。
保存 pad()和特定特征提取器__call__
方法的输出。
这个类是从一个 Python 字典派生而来的,可以作为一个字典使用。
convert_to_tensors
( tensor_type: Union = None )
参数
tensor_type
(str
或 TensorType,可选)- 要使用的张量类型。如果是str
,应该是枚举 TensorType 的值之一。如果是None
,则不进行修改。
将内部内容转换为张量。
to
( *args **kwargs ) → export const metadata = 'undefined';BatchFeature
参数
-
args
(Tuple
)- 将传递给张量的to(...)
函数。 -
kwargs
(Dict
,可选)- 将传递给张量的to(...)
函数。
返回
BatchFeature
修改后的相同实例。
通过调用v.to(*args, **kwargs)
将所有值发送到设备(仅适用于 PyTorch)。这应该支持在不同的dtypes
中进行转换,并将BatchFeature
发送到不同的device
。
BaseImageProcessor
class transformers.image_processing_utils.BaseImageProcessor
( **kwargs )
center_crop
( image: ndarray size: Dict data_format: Union = None input_data_format: Union = None **kwargs )
参数
-
image
(np.ndarray
)- 要居中裁剪的图像。 -
size
(Dict[str, int]
)- 输出图像的大小。 -
data_format
(str
或ChannelDimension
,可选)- 输出图像的通道维度格式。如果未设置,则使用输入图像的通道维度格式。可以是以下之一:-
"channels_first"
或ChannelDimension.FIRST
:图像以(num_channels, height, width)格式。 -
"channels_last"
或ChannelDimension.LAST
:图像以(height, width, num_channels)格式。
-
-
input_data_format
(ChannelDimension
或str
,可选)- 输入图像的通道维度格式。如果未设置,则从输入图像推断通道维度格式。可以是以下之一:-
"channels_first"
或ChannelDimension.FIRST
:图像以(num_channels, height, width)格式。 -
"channels_last"
或ChannelDimension.LAST
:图像以(height, width, num_channels)格式。
-
将图像居中裁剪到(size["height"], size["width"])
。如果输入尺寸沿任何边小于crop_size
,则图像将填充为 0,然后居中裁剪。
normalize
( image: ndarray mean: Union std: Union data_format: Union = None input_data_format: Union = None **kwargs ) → export const metadata = 'undefined';np.ndarray
参数
-
image
(np.ndarray
)- 要归一化的图像。 -
mean
(float
或Iterable[float]
)- 用于归一化的图像均值。 -
std
(float
或Iterable[float]
)- 用于归一化的图像标准差。 -
data_format
(str
或ChannelDimension
,可选) — 输出图像的通道维度格式。如果未设置,则使用输入图像的通道维度格式。可以是以下之一:-
"channels_first"
或ChannelDimension.FIRST
:图像以 (通道数, 高度, 宽度) 格式。 -
"channels_last"
或ChannelDimension.LAST
:图像以 (高度, 宽度, 通道数) 格式。
-
-
input_data_format
(ChannelDimension
或str
,可选) — 输入图像的通道维度格式。如果未设置,则从输入图像中推断通道维度格式。可以是以下之一:-
"channels_first"
或ChannelDimension.FIRST
:图像以 (通道数, 高度, 宽度) 格式。 -
"channels_last"
或ChannelDimension.LAST
:图像以 (高度, 宽度, 通道数) 格式。
-
返回值
np.ndarray
归一化后的图像。
归一化图像。图像 = (图像 - 图像均值) / 图像标准差。
重新缩放
( image: ndarray scale: float data_format: Union = None input_data_format: Union = None **kwargs ) → export const metadata = 'undefined';np.ndarray
参数
-
image
(np.ndarray
) — 要重新缩放的图像。 -
scale
(float
) — 用于重新缩放像素值的缩放因子。 -
data_format
(str
或ChannelDimension
,可选) — 输出图像的通道维度格式。如果未设置,则使用输入图像的通道维度格式。可以是以下之一:-
"channels_first"
或ChannelDimension.FIRST
:图像以 (通道数, 高度, 宽度) 格式。 -
"channels_last"
或ChannelDimension.LAST
:图像以 (高度, 宽度, 通道数) 格式。
-
-
input_data_format
(ChannelDimension
或str
,可选) — 输入图像的通道维度格式。如果未设置,则从输入图像中推断通道维度格式。可以是以下之一:-
"channels_first"
或ChannelDimension.FIRST
:图像以 (通道数, 高度, 宽度) 格式。 -
"channels_last"
或ChannelDimension.LAST
:图像以 (高度, 宽度, 通道数) 格式。
-
返回值
np.ndarray
重新缩放后的图像。
通过缩放因子重新缩放图像。图像 = 图像 * 缩放因子。
模型
文本模型
ALBERT
原始文本:
huggingface.co/docs/transformers/v4.37.2/en/model_doc/albert
概述
ALBERT 模型是由 Zhenzhong Lan、Mingda Chen、Sebastian Goodman、Kevin Gimpel、Piyush Sharma、Radu Soricut 在ALBERT: A Lite BERT for Self-supervised Learning of Language Representations中提出的。它提出了两种减少内存消耗并增加 BERT 训练速度的参数减少技术:
-
将嵌入矩阵分成两个较小的矩阵。
-
使用在组之间分割的重复层。
论文的摘要如下:
在预训练自然语言表示时增加模型大小通常会导致在下游任务上表现提高。然而,在某个时候,由于 GPU/TPU 内存限制、更长的训练时间和意外的模型退化,进一步增加模型变得更加困难。为了解决这些问题,我们提出了两种参数减少技术,以降低内存消耗并增加 BERT 的训练速度。全面的实证证据表明,我们提出的方法导致模型比原始 BERT 更好地扩展。我们还使用了一个自监督损失,重点放在建模句子间的一致性上,并且展示它在具有多句输入的下游任务中始终有所帮助。因此,我们的最佳模型在 GLUE、RACE 和 SQuAD 基准测试中建立了新的最先进结果,同时与 BERT-large 相比具有更少的参数。
此模型由lysandre贡献。此模型 jax 版本由kamalkraj贡献。原始代码可以在这里找到。
使用提示
-
ALBERT 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
-
ALBERT 使用重复层,导致内存占用较小,但计算成本与具有相同数量隐藏层的 BERT-like 架构相似,因为它必须遍历相同数量的(重复)层。
-
嵌入大小 E 与隐藏大小 H 不同的原因是,嵌入是上下文无关的(一个嵌入向量表示一个标记),而隐藏状态是上下文相关的(一个隐藏状态表示一个标记序列),因此 H >> E 更合乎逻辑。此外,嵌入矩阵很大,因为它是 V x E(V 是词汇量)。如果 E < H,则参数较少。
-
层被分成共享参数的组(以节省内存)。下一个句子预测被句子排序预测所取代:在输入中,我们有两个连续的句子 A 和 B,我们要么输入 A 后跟 B,要么输入 B 后跟 A。模型必须预测它们是否被交换了。
此模型由lysandre贡献。此模型 jax 版本由kamalkraj贡献。原始代码可以在这里找到。
资源
以下部分提供的资源包括官方 Hugging Face 和社区(由🌎表示)资源列表,以帮助您开始使用 AlBERT。如果您有兴趣提交资源以包含在此处,请随时打开一个 Pull Request,我们将对其进行审查!资源应该理想地展示一些新东西,而不是重复现有资源。
文本分类
-
AlbertForSequenceClassification 这个示例脚本 支持。
-
TFAlbertForSequenceClassification 这个示例脚本支持。
-
查看 Text classification task guide 如何使用模型。
标记分类
-
AlbertForTokenClassification 这个示例脚本支持。
-
FlaxAlbertForTokenClassification 这个示例脚本支持。
-
Token classification 🤗 Hugging Face 课程的章节。
-
查看 Token classification task guide 如何使用模型。
填充-掩码
-
掩码语言建模 🤗 Hugging Face 课程的章节。
-
查看 Masked language modeling task guide 如何使用模型。
问答
多项选择
-
查看多项选择任务指南以了解如何使用模型。
AlbertConfig
class transformers.AlbertConfig
( vocab_size = 30000 embedding_size = 128 hidden_size = 4096 num_hidden_layers = 12 num_hidden_groups = 1 num_attention_heads = 64 intermediate_size = 16384 inner_group_num = 1 hidden_act = 'gelu_new' hidden_dropout_prob = 0 attention_probs_dropout_prob = 0 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 classifier_dropout_prob = 0.1 position_embedding_type = 'absolute' pad_token_id = 0 bos_token_id = 2 eos_token_id = 3 **kwargs )
参数
-
vocab_size
(int
, 可选, 默认为 30000) — ALBERT 模型的词汇表大小。定义了在调用 AlbertModel 或 TFAlbertModel 时可以表示的不同标记数量。 -
embedding_size
(int
, 可选, 默认为 128) — 词汇嵌入的维度。 -
hidden_size
(int
, 可选, 默认为 4096) — 编码器层和池化器层的维度。 -
num_hidden_layers
(int
, 可选, 默认为 12) — Transformer 编码器中的隐藏层数。 -
num_hidden_groups
(int
, 可选, 默认为 1) — 隐藏层的组数,同一组中的参数是共享的。 -
num_attention_heads
(int
, 可选, 默认为 64) — Transformer 编码器中每个注意力层的注意力头数。 -
intermediate_size
(int
, 可选, 默认为 16384) — Transformer 编码器中“中间”(通常称为前馈)层的维度。 -
inner_group_num
(int
, 可选, 默认为 1) — 注意力和前馈的内部重复次数。 -
hidden_act
(str
或Callable
, 可选, 默认为"gelu_new"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
、"relu"
、"silu"
和"gelu_new"
。 -
hidden_dropout_prob
(float
, 可选, 默认为 0) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。 -
attention_probs_dropout_prob
(float
, 可选, 默认为 0) — 注意力概率的 dropout 比率。 -
max_position_embeddings
(int
, 可选, 默认为 512) — 该模型可能使用的最大序列长度。通常将其设置为较大的值(例如,512、1024 或 2048)。 -
type_vocab_size
(int
, optional, defaults to 2) — 在调用 AlbertModel 或 TFAlbertModel 时传递的token_type_ids
的词汇表大小。 -
initializer_range
(float
, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。 -
layer_norm_eps
(float
, optional, defaults to 1e-12) — 层归一化层使用的 epsilon。 -
classifier_dropout_prob
(float
, optional, defaults to 0.1) — 附加分类器的丢弃比率。 -
position_embedding_type
(str
, optional, defaults to"absolute"
) — 位置嵌入的类型。选择"absolute"
、"relative_key"
、"relative_key_query"
中的一个。对于位置嵌入,请使用"absolute"
。有关"relative_key"
的更多信息,请参阅Self-Attention with Relative Position Representations (Shaw et al.)。有关"relative_key_query"
的更多信息,请参阅Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)中的Method 4。 -
pad_token_id
(int
, optional, defaults to 0) — 填充标记的 id。 -
bos_token_id
(int
, optional, defaults to 2) — 流开始标记的 id。 -
eos_token_id
(int
, optional, defaults to 3) — 流结束标记的 id。
这是用于存储 AlbertModel 或 TFAlbertModel 配置的配置类。根据指定的参数实例化 ALBERT 模型,定义模型架构。使用默认值实例化配置将产生类似于 ALBERT albert-xxlarge-v2架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
示例:
>>> from transformers import AlbertConfig, AlbertModel
>>> # Initializing an ALBERT-xxlarge style configuration
>>> albert_xxlarge_configuration = AlbertConfig()
>>> # Initializing an ALBERT-base style configuration
>>> albert_base_configuration = AlbertConfig(
... hidden_size=768,
... num_attention_heads=12,
... intermediate_size=3072,
... )
>>> # Initializing a model (with random weights) from the ALBERT-base style configuration
>>> model = AlbertModel(albert_xxlarge_configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
AlbertTokenizer
class transformers.AlbertTokenizer
( vocab_file do_lower_case = True remove_space = True keep_accents = False bos_token = '[CLS]' eos_token = '[SEP]' unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' sp_model_kwargs: Optional = None **kwargs )
参数
-
vocab_file
(str
) — 包含实例化分词器所需词汇的SentencePiece文件(通常具有.spm扩展名)。 -
do_lower_case
(bool
, optional, defaults toTrue
) — 在分词时是否将输入转换为小写。 -
remove_space
(bool
, optional, defaults toTrue
) — 在分词时是否去除文本(删除字符串前后的多余空格)。 -
keep_accents
(bool
, optional, defaults toFalse
) — 在分词时是否保留重音。 -
bos_token
(str
, optional, defaults to"[CLS]"
) — 用于预训练期间的序列开始标记。可以用作序列分类器标记。在使用特殊标记构建序列时,这不是用于序列开始的标记。实际使用的是
cls_token
。 -
eos_token
(str
, optional, defaults to"[SEP]"
) — 序列结束标记。在使用特殊标记构建序列时,这不是用于序列结束的标记。实际使用的是
sep_token
。 -
unk_token
(str
, optional, defaults to"<unk>"
) — 未知标记。词汇表中没有的标记无法转换为 ID,而是设置为此标记。 -
sep_token
(str
,可选,默认为"[SEP]"
)— 分隔符标记,在从多个序列构建序列时使用,例如,用于序列分类的两个序列或用于文本和问题的问题回答。它也被用作使用特殊标记构建的序列的最后一个标记。 -
pad_token
(str
,可选,默认为"<pad>"
)— 用于填充的标记,例如在批处理不同长度的序列时使用。 -
cls_token
(str
,可选,默认为"[CLS]"
)— 在进行序列分类(整个序列的分类而不是每个标记的分类)时使用的分类器标记。当使用特殊标记构建序列时,它是序列的第一个标记。 -
mask_token
(str
,可选,默认为"[MASK]"
)— 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。 -
sp_model_kwargs
(dict
,可选)— 将传递给SentencePieceProcessor.__init__()
方法。SentencePiece 的 Python 包装器可用于设置:-
enable_sampling
:启用子词正则化。 -
nbest_size
:unigram 的抽样参数。对于 BPE-Dropout 无效。-
nbest_size = {0,1}
:不执行抽样。 -
nbest_size > 1
:从 nbest_size 结果中进行抽样。 -
nbest_size < 0
:假设 nbest_size 为无限,并使用前向过滤和后向抽样算法从所有假设(格)中进行抽样。
-
-
alpha
:unigram 抽样的平滑参数,以及 BPE-dropout 的合并操作的丢失概率。
-
-
sp_model
(SentencePieceProcessor
)— 用于每次转换(字符串、标记和 ID)的SentencePiece处理器。
构建一个 ALBERT 分词器。基于SentencePiece。
此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
)— 将添加特殊标记的 ID 列表。 -
token_ids_1
(List[int]
,可选)— 序列对的可选第二个 ID 列表。
返回
List[int]
具有适当特殊标记的 input IDs 列表。
通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。一个 ALBERT 序列具有以下格式:
-
单个序列:
[CLS] X [SEP]
-
一对序列:
[CLS] A [SEP] B [SEP]
get_special_tokens_mask
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
)— ID 列表。 -
token_ids_1
(List[int]
,可选)— 序列对的可选第二个 ID 列表。 -
already_has_special_tokens
(bool
,可选,默认为False
)— 标记列表是否已经使用特殊标记格式化为模型。
返回
List[int]
一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。
从没有添加特殊标记的标记列表中检索序列 ID。在使用分词器prepare_for_model
方法添加特殊标记时调用此方法。
create_token_type_ids_from_sequences
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
)— ID 列表。 -
token_ids_1
(List[int]
,可选)— 序列对的可选第二个 ID 列表。
返回
List[int]
根据给定序列的 token type IDs 列表。
从传递的两个序列创建一个用于序列对分类任务的掩码。一个 ALBERT
序列对掩码的格式如下:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
如果 token_ids_1
为 None
,此方法仅返回掩码的第一部分(0s)。
save_vocabulary
( save_directory: str filename_prefix: Optional = None )
AlbertTokenizerFast
class transformers.AlbertTokenizerFast
( vocab_file = None tokenizer_file = None do_lower_case = True remove_space = True keep_accents = False bos_token = '[CLS]' eos_token = '[SEP]' unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' **kwargs )
参数
-
vocab_file
(str
) — 包含实例化分词器所需词汇的 SentencePiece 文件(通常具有 .spm 扩展名)。 -
do_lower_case
(bool
, optional, 默认为True
) — 在分词时是否将输入转换为小写。 -
remove_space
(bool
, optional, 默认为True
) — 在分词时是否去除文本(删除字符串前后的多余空格)。 -
keep_accents
(bool
, optional, 默认为False
) — 在分词时是否保留重音。 -
bos_token
(str
, optional, 默认为"[CLS]"
) — 在预训练期间使用的序列开头标记。可用作序列分类器标记。在使用特殊标记构建序列时,不是用于序列开头的标记。使用的标记是
cls_token
。 -
eos_token
(str
, optional, 默认为"[SEP]"
) — 序列结束标记。.. 注意:在使用特殊标记构建序列时,不是用于序列结尾的标记。使用的标记是sep_token
。 -
unk_token
(str
, optional, 默认为"<unk>"
) — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。 -
sep_token
(str
, optional, 默认为"[SEP]"
) — 分隔符标记,在从多个序列构建序列时使用,例如用于序列分类的两个序列或用于问题回答的文本和问题。它还用作使用特殊标记构建的序列的最后一个标记。 -
pad_token
(str
, optional, 默认为"<pad>"
) — 用于填充的标记,例如在批处理不同长度的序列时使用。 -
cls_token
(str
, optional, 默认为"[CLS]"
) — 用于进行序列分类时使用的分类器标记(对整个序列进行分类而不是每个标记的分类)。在使用特殊标记构建时,它是序列的第一个标记。 -
mask_token
(str
, optional, 默认为"[MASK]"
) — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。
构建一个“快速” ALBERT 分词器(由 HuggingFace 的 tokenizers 库支持)。基于 Unigram。此分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息
build_inputs_with_special_tokens
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — 将添加特殊标记的 ID 列表 -
token_ids_1
(List[int]
, optional) — 序列对的可选第二个 ID 列表。
返回
List[int]
带有适当特殊标记的 input IDs 列表。
通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。一个 ALBERT 序列的格式如下:
-
单个序列:
[CLS] X [SEP]
-
序列对:
[CLS] A [SEP] B [SEP]
create_token_type_ids_from_sequences
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — ID 列表。 -
token_ids_1
(List[int]
,可选) — 序列对的第二个 ID 列表。
返回
List[int]
根据给定序列(s)的 token 类型 ID 列表。
从传递的两个序列创建一个用于序列对分类任务的掩码。一个 ALBERT
序列对掩码的格式如下:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
如果 token_ids_1 为 None,则只返回掩码的第一部分(0s)。
Albert 特定的输出
class transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput
( loss: Optional = None prediction_logits: FloatTensor = None sop_logits: FloatTensor = None hidden_states: Optional = None attentions: Optional = None )
参数
-
loss
(可选,当提供labels
时返回,形状为(1,)
的torch.FloatTensor
) — 作为被屏蔽的语言建模损失和下一个序列预测(分类)损失之和的总损失。 -
prediction_logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(在 SoftMax 之前的每个词汇标记的得分)。 -
sop_logits
(torch.FloatTensor
of shape(batch_size, 2)
) — 下一个序列预测(分类)头部的预测分数(在 SoftMax 之前的 True/False 继续得分)。 -
hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组。模型在每一层输出的隐藏状态以及初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForPreTraining 的输出类型。
class transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput
( loss: tf.Tensor = None prediction_logits: tf.Tensor = None sop_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None )
参数
-
prediction_logits
(tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(在 SoftMax 之前的每个词汇标记的得分)。 -
sop_logits
(tf.Tensor
of shape(batch_size, 2)
) — 下一个序列预测(分类)头部的预测分数(在 SoftMax 之前的 True/False 继续得分)。 -
hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组。模型在每一层输出的隐藏状态以及初始嵌入输出。
-
attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组。在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForPreTraining 的输出类型。
PytorchHide Pytorch 内容
AlbertModel
class transformers.AlbertModel
( config: AlbertConfig add_pooling_layer: bool = True )
参数
config
(AlbertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
裸的 ALBERT 模型变压器输出原始隐藏状态,没有特定的头部。
这个模型继承自 PreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。
这个模型也是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。选择在[0, 1]
中的掩码值:-
1 表示未被
masked
的标记, -
0 表示被
masked
的标记。
什么是注意力掩码?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?
-
head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)— 用于使自注意力模块的选定头部失效的掩码。选择在[0, 1]
中的掩码值:-
1 表示头是
not masked
, -
0 表示头是
masked
。
-
-
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.BaseModelOutputWithPooling 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.BaseModelOutputWithPooling 或一个torch.FloatTensor
的元组(如果传递了return_dict=False
或config.return_dict=False
时)包括根据配置(AlbertConfig)和输入的各种元素。
-
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
)— 模型最后一层的隐藏状态序列。 -
pooler_output
(形状为(batch_size, hidden_size)
的torch.FloatTensor
)— 经过辅助预训练任务的层进一步处理后的序列第一个标记(分类标记)的最后一层隐藏状态。例如,对于 BERT 系列模型,这返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是在预训练期间从下一个句子预测(分类)目标中训练的。 -
hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出加上每一层的输出)。模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
AlbertModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, AlbertModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = AlbertModel.from_pretrained("albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
AlbertForPreTraining
class transformers.AlbertForPreTraining
( config: AlbertConfig )
参数
config
(AlbertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型在预训练期间顶部有两个头部:一个掩码语言建模
头部和一个句子顺序预测(分类)
头部。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。
此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None sentence_order_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,optional) — 用于避免在填充标记索引上执行注意力的蒙版。蒙版值在[0, 1]
中选择:-
对于未被屏蔽的标记为 1,
-
对于被屏蔽的标记为 0。
什么是注意力蒙版?
-
-
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?
-
head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,optional) — 用于使自注意力模块的选定头部失效的蒙版。蒙版值在[0, 1]
中选择:-
1 表示头部未被屏蔽,
-
0 表示头部被屏蔽。
-
-
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
output_attentions
(bool
,optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
,optional) — 是否返回 ModelOutput 而不是普通元组。 -
labels
(torch.LongTensor
,形状为(batch_size, sequence_length)
,optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(请参阅input_ids
文档字符串)。索引设置为-100
的标记将被忽略(屏蔽),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。 -
sentence_order_label
(形状为(batch_size,)
的torch.LongTensor
,可选)— 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对(参见input_ids
文档字符串)。索引应该在[0, 1]
范围内。0
表示原始顺序(先序列 A,然后序列 B),1
表示交换顺序(先序列 B,然后序列 A)。
返回
transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput 或tuple(torch.FloatTensor)
一个 transformers.models.albert.modeling_albert.AlbertForPreTrainingOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的不同元素。
-
loss
(可选,当提供labels
时返回,形状为(1,)
的torch.FloatTensor
)— 总损失,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。 -
prediction_logits
(形状为(batch_size, sequence_length, config.vocab_size)
的torch.FloatTensor
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
sop_logits
(形状为(batch_size, 2)
的torch.FloatTensor
)— 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 继续分数)。 -
hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。模型在每一层输出的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForPreTraining 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, AlbertForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = AlbertForPreTraining.from_pretrained("albert-base-v2")
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits
>>> sop_logits = outputs.sop_logits
AlbertForMaskedLM
class transformers.AlbertForMaskedLM
( config )
参数
config
(AlbertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
具有顶部语言建模
头的 Albert 模型。
这个模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。
此模型还是一个 PyTorch torch.nn.Module 子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
() 和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:-
1 表示未被屏蔽的标记。
-
0 表示被屏蔽的标记。
什么是注意力掩码?
-
-
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
之间:-
0 对应于 句子 A 标记,
-
1 对应于 句子 B 标记。
什么是标记类型 ID?
-
-
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。什么是位置 ID?
-
head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:-
1 表示头部未被屏蔽,
-
0 表示头部被屏蔽。
-
-
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 -
labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
中(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(屏蔽),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。
返回值
transformers.modeling_outputs.MaskedLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包含根据配置(AlbertConfig)和输入的各种元素。
-
loss
(torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 掩码语言建模(MLM)损失。 -
logits
(torch.FloatTensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> import torch
>>> from transformers import AutoTokenizer, AlbertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = AlbertForMaskedLM.from_pretrained("albert-base-v2")
>>> # add mask_token
>>> inputs = tokenizer("The capital of [MASK] is Paris.", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
>>> tokenizer.decode(predicted_token_id)
'france'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(outputs.loss.item(), 2)
0.81
AlbertForSequenceClassification
class transformers.AlbertForSequenceClassification
( config: AlbertConfig )
参数
config
(AlbertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型变压器,顶部带有序列分类/回归头(池化输出之上的线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
() 和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充的标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:-
1 表示未被屏蔽的标记,
-
0 表示被屏蔽的标记。
什么是注意力掩码?
-
-
token_type_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:-
0 对应于 句子 A 标记,
-
1 对应于 句子 B 标记。
什么是标记类型 ID?
-
-
position_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?
-
head_mask
(torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]
中选择:-
1 表示头部未被屏蔽,
-
0 表示头部被屏蔽。
-
-
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 -
labels
(torch.LongTensor
of shape(batch_size,)
, optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.SequenceClassifierOutput 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.SequenceClassifierOutput 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(AlbertConfig)和输入的不同元素。
-
loss
(torch.FloatTensor
of shape(1,)
, optional, 当提供labels
时返回) — 分类(如果config.num_labels==1
则为回归)损失。 -
logits
(torch.FloatTensor
of shape(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。 -
hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出加上每一层的输出)。模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
transformers.AlbertForSequenceClassification
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
单标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, AlbertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("textattack/albert-base-v2-imdb")
>>> model = AlbertForSequenceClassification.from_pretrained("textattack/albert-base-v2-imdb")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_1'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = AlbertForSequenceClassification.from_pretrained("textattack/albert-base-v2-imdb", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.12
多标签分类示例:
>>> import torch
>>> from transformers import AutoTokenizer, AlbertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("textattack/albert-base-v2-imdb")
>>> model = AlbertForSequenceClassification.from_pretrained("textattack/albert-base-v2-imdb", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = AlbertForSequenceClassification.from_pretrained(
... "textattack/albert-base-v2-imdb", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
AlbertForMultipleChoice
class transformers.AlbertForMultipleChoice
( config: AlbertConfig )
参数
config
(AlbertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型,顶部带有多选分类头(池化输出顶部的线性层和 softmax),例如用于 RocStories/SWAG 任务。
这个模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是 PyTorch 的torch.nn.Module
子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length)
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:-
not masked
的标记为 1, -
masked
的标记为 0。
什么是注意力掩码?
-
-
token_type_ids
(torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选)— 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:-
0 对应于 句子 A 的标记,
-
1 对应于 句子 B 的标记。
什么是标记类型 ID?
-
-
position_ids
(torch.LongTensor
,形状为(batch_size, num_choices, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。什么是位置 ID?
-
head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]
:-
1 表示头部是
not masked
, -
0 表示头部是
masked
。
-
-
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, num_choices, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为关联向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多细节,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多细节,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。 -
labels
(torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]
范围内,其中 num_choices 是输入张量第二维的大小。 (参见上面的 input_ids)
返回
transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或 config.return_dict=False
)包含根据配置(AlbertConfig)和输入的不同元素。
-
loss
(torch.FloatTensor
,形状为 (1,),可选,当提供labels
时返回) — 分类损失。 -
logits
(torch.FloatTensor
,形状为(batch_size, num_choices)
) — num_choices 是输入张量的第二维大小。 (参见上面的 input_ids)。分类得分(SoftMax 之前)。
-
hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出 + 每层的输出)。模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
AlbertForMultipleChoice 的前向方法,覆盖了 __call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, AlbertForMultipleChoice
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = AlbertForMultipleChoice.from_pretrained("albert-base-v2")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0) # choice0 is correct (according to Wikipedia ;)), batch size 1
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits
AlbertForTokenClassification
class transformers.AlbertForTokenClassification
( config: AlbertConfig )
参数
config
(AlbertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部带有标记分类头的 Albert 模型(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。
此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。
前进
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:-
对于未被
masked
的标记为 1, -
对于被
masked
的标记为 0。
什么是注意力掩码?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]
中选择:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?
-
head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的torch.FloatTensor
,可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]
中选择:-
1 表示头部未被
masked
, -
0 表示头部被
masked
。
-
-
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 -
output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 -
labels
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回
transformers.modeling_outputs.TokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.TokenClassifierOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时),包括根据配置(AlbertConfig)和输入的不同元素。
-
loss
(torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 分类损失。 -
logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) — 分类得分(SoftMax 之前)。 -
hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的输出+每层的输出)。模型在每一层输出的隐藏状态以及可选的初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
AlbertForTokenClassification 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, AlbertForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = AlbertForTokenClassification.from_pretrained("albert-base-v2")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
AlbertForQuestionAnswering
class transformers.AlbertForQuestionAnswering
( config: AlbertConfig )
参数
config
(AlbertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型,顶部带有一个用于提取问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的线性层上计算span start logits
和span end logits
)。
此模型继承自 PreTrainedModel。检查超类文档以获取库实现的所有模型的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个 PyTorch torch.nn.Module 子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
() 和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(torch.FloatTensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充的标记索引上执行注意力的掩码。掩码值选择在[0, 1]
:-
1 表示未被
masked
的标记, -
0 表示被
masked
的标记。
什么是注意力掩码?
-
-
token_type_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
:-
0 对应于一个 句子 A 的标记,
-
1 对应于一个 句子 B 的标记。
什么是标记类型 ID?
-
-
position_ids
(torch.LongTensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记的位置嵌入的索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?
-
head_mask
(torch.FloatTensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]
:-
1 表示头部未被
masked
, -
0 表示头部被
masked
。
-
-
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。 -
output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多细节,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多细节,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 -
start_positions
(torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算标记跨度开始位置的标签(索引)。位置被夹紧到序列的长度 (sequence_length
)。序列外的位置不会被考虑在内以计算损失。 -
end_positions
(形状为(batch_size,)
的torch.LongTensor
,可选)- 用于计算标记跨度结束位置的位置(索引)的标签。位置被夹紧到序列的长度(sequence_length
)。序列外的位置不会被考虑在内计算损失。
返回
transformers.modeling_outputs.QuestionAnsweringModelOutput 或tuple(torch.FloatTensor)
transformers.modeling_outputs.QuestionAnsweringModelOutput 或torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(AlbertConfig)和输入的各种元素。
-
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供labels
时返回)- 总跨度提取损失是起始和结束位置的交叉熵之和。 -
start_logits
(形状为(batch_size, sequence_length)
的torch.FloatTensor
)- 跨度开始分数(SoftMax 之前)。 -
end_logits
(形状为(batch_size, sequence_length)
的torch.FloatTensor
)- 跨度结束分数(SoftMax 之前)。 -
hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。每层模型的隐藏状态以及可选的初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。在自注意力头中用于计算加权平均值的注意力权重 softmax 后。
AlbertForQuestionAnswering 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的步骤需要在此函数中定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, AlbertForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("twmkn9/albert-base-v2-squad2")
>>> model = AlbertForQuestionAnswering.from_pretrained("twmkn9/albert-base-v2-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
'a nice puppet'
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([12])
>>> target_end_index = torch.tensor([13])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
7.36
TensorFlow 隐藏了 TensorFlow 内容
TFAlbertModel
class transformers.TFAlbertModel
( config: AlbertConfig *inputs **kwargs )
参数
config
(AlbertConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
裸的 Albert 模型变压器输出原始隐藏状态,没有特定的头部。
此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型还是tf.keras.Model子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种输入格式:
-
将所有输入作为关键字参数(类似于 PyTorch 模型),或
-
将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该会“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
-
一个仅包含
input_ids
的单个张量,没有其他内容:model(input_ids)
-
一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些内容,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling or tuple(tf.Tensor)
参数
-
input_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:-
1 表示未被屏蔽的标记,
-
0 表示被屏蔽的标记。
什么是注意力掩码?
-
-
token_type_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?
-
head_mask
(Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中选择的头部无效的掩码。掩码值在[0, 1]
中选择:-
1 表示头部未被屏蔽,
-
0 表示头部被屏蔽。
-
-
inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通元组。这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
, 可选,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPooling 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(AlbertConfig)和输入不同元素。
-
last_hidden_state
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。 -
pooler_output
(tf.Tensor
,形状为(batch_size, hidden_size)
) — 序列第一个标记(分类标记)的最后一层隐藏状态,经过一个线性层和一个 Tanh 激活函数进一步处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。这个输出通常不是输入的语义内容的良好摘要,你通常最好对整个输入序列的隐藏状态进行平均或池化。
-
hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。每一层模型的隐藏状态以及初始嵌入输出。
-
attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每一层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在这个函数内定义,但应该在此之后调用Module
实例,而不是这个函数,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFAlbertModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = TFAlbertModel.from_pretrained("albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFAlbertForPreTraining
class transformers.TFAlbertForPreTraining
( config: AlbertConfig *inputs **kwargs )
参数
config
(AlbertConfig) — 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型在预训练时具有两个头部:一个屏蔽语言建模
头部和一个句子顺序预测
(分类)头部。
此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(类似于 PyTorch 模型)。
-
将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该可以“正常工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于收集所有输入张量在第一个位置参数中:
-
只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
-
一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些内容,因为您可以像对待任何其他 Python 函数一样传递输入!
调用
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None sentence_order_label: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:-
对于
未屏蔽
的标记, -
对于
屏蔽
的标记为 0。
什么是注意力掩码?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(Numpy 数组
或形状为(batch_size, sequence_length)
的tf.Tensor
,optional) — 每个输入序列标记的位置的索引在位置嵌入中。在范围[0, config.max_position_embeddings - 1]
中选择。什么是位置 ID?
-
head_mask
(Numpy 数组
或形状为(num_heads,)
或(num_layers, num_heads)
的tf.Tensor
,optional) — 用于使自注意力模块的选定头部失效的掩码。在[0, 1]
中选择的掩码值:-
1 表示头部未被掩盖,
-
0 表示头部被掩盖。
-
-
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
,optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。 -
return_dict
(bool
,optional) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数仅在急切模式下可用,在图模式下该值将始终设置为 True。 -
training
(bool
,optional,默认为False
) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。
返回
transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput 或tuple(tf.Tensor)
一个 transformers.models.albert.modeling_tf_albert.TFAlbertForPreTrainingOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(AlbertConfig)和输入。
-
prediction_logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
sop_logits
(tf.Tensor
,形状为(batch_size, 2)
) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续性分数)。 -
hidden_states
(tuple(tf.Tensor)
,optional,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。每层模型的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(tf.Tensor)
,optional,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForPreTraining 的前向方法,覆盖__call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFAlbertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = TFAlbertForPreTraining.from_pretrained("albert-base-v2")
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True))[None, :]
>>> # Batch size 1
>>> outputs = model(input_ids)
>>> prediction_logits = outputs.prediction_logits
>>> sop_logits = outputs.sop_logits
TFAlbertForMaskedLM
class transformers.TFAlbertForMaskedLM
( config: AlbertConfig *inputs **kwargs )
参数
config
(AlbertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型顶部带有一个语言建模
头。
这个模型继承自 TFPreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(类似于 PyTorch 模型),或者
-
将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该“只需工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:
-
只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
-
一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个包含一个或多个输入张量的字典,与文档字符串中给定的输入名称相关联:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMaskedLMOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的Numpy 数组
或tf.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]
中:-
对于“未掩码”的标记为 1,
-
0 代表被
masked
的标记。
什么是注意力掩码?
-
-
token_type_ids
(Numpy 数组
或形状为(batch_size, sequence_length)
的tf.Tensor
,optional) — 段标记索引,指示输入的第一部分和第二部分。索引选在[0, 1]
之间:-
0 对应于句子 A的标记,
-
1 对应于句子 B的标记。
什么是标记类型 ID?
-
-
position_ids
(Numpy 数组
或形状为(batch_size, sequence_length)
的tf.Tensor
,optional) — 每个输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]
内。什么是位置 ID?
-
head_mask
(Numpy 数组
或形状为(num_heads,)
或(num_layers, num_heads)
的tf.Tensor
,optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选在[0, 1]
之间:-
1 表示头部未被
masked
, -
0 表示头部被
masked
。
-
-
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,optional) — 可选地,您可以直接传递一个嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
,optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。这个参数只能在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
,optional,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 -
labels
(tf.Tensor
,形状为(batch_size, sequence_length)
,optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]
内(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(masked),损失仅计算具有标签在[0, ..., config.vocab_size]
内的标记。
返回
transformers.modeling_tf_outputs.TFMaskedLMOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFMaskedLMOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含根据配置(AlbertConfig)和输入不同元素。
-
loss
(tf.Tensor
,形状为(n,)
,optional,当提供labels
时返回) — 掩码语言建模(MLM)损失。 -
logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states
(tuple(tf.Tensor)
,optional,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。模型在每一层的输出处的隐藏状态以及初始嵌入输出。
-
attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForMaskedLM 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> import tensorflow as tf
>>> from transformers import AutoTokenizer, TFAlbertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = TFAlbertForMaskedLM.from_pretrained("albert-base-v2")
>>> # add mask_token
>>> inputs = tokenizer(f"The capital of [MASK] is Paris.", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # retrieve index of [MASK]
>>> mask_token_index = tf.where(inputs.input_ids == tokenizer.mask_token_id)[0][1]
>>> predicted_token_id = tf.math.argmax(logits[0, mask_token_index], axis=-1)
>>> tokenizer.decode(predicted_token_id)
'france'
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]
>>> labels = tf.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)
>>> outputs = model(**inputs, labels=labels)
>>> round(float(outputs.loss), 2)
0.81
TFAlbertForSequenceClassification
class transformers.TFAlbertForSequenceClassification
( config: AlbertConfig *inputs **kwargs )
参数
config
(AlbertConfig)—模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型变换器,顶部带有序列分类/回归头(汇总输出的线性层),例如用于 GLUE 任务。
此模型继承自 TFPreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(类似于 PyTorch 模型),或
-
将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有此支持,当使用model.fit()
等方法时,应该“只需工作” - 只需传递您的输入和标签,以任何model.fit()
支持的格式!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于在第一个位置参数中收集所有输入张量:
-
一个只有
input_ids
的单个张量,没有其他内容:model(input_ids)
-
一个具有一个或多个输入张量的变长列表,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,在使用子类化创建模型和层时,您不需要担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
参数
-
input_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
() 和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 遮蔽掩码,避免在填充标记索引上执行注意力。遮蔽值选在[0, 1]
之间。-
1 表示未被遮蔽的标记,
-
0 表示被遮蔽的标记。
什么是注意力遮蔽?
-
-
token_type_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 指示输入的第一部分和第二部分的段标记索引。索引选在[0, 1]
之间:-
0 对应 句子 A 标记,
-
1 对应 句子 B 标记。
什么是标记类型 ID?
-
-
position_ids
(Numpy array
或tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]
中。什么是位置 ID?
-
head_mask
(Numpy array
或tf.Tensor
,形状为(num_heads,)
或(num_layers, num_heads)
,可选) — 用于使自注意力模块中的特定头部失效的掩码。掩码值选在[0, 1]
之间。-
1 表示头部未被遮蔽,
-
0 表示头部被遮蔽。
-
-
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
,可选,默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 -
labels
(tf.Tensor
,形状为(batch_size,)
,可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
中。如果config.num_labels == 1
,则计算回归损失(均方损失),如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSequenceClassifierOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的不同元素。
-
loss
(tf.Tensor
of shape(batch_size, )
,可选,当提供labels
时返回) — 分类(如果 config.num_labels==1 则为回归)损失。 -
logits
(tf.Tensor
of shape(batch_size, config.num_labels)
) — 分类(如果 config.num_labels==1 则为回归)得分(SoftMax 之前)。 -
hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。模型在每个层的输出处的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForSequenceClassification 的前向方法重写了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFAlbertForSequenceClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("vumichien/albert-base-v2-imdb")
>>> model = TFAlbertForSequenceClassification.from_pretrained("vumichien/albert-base-v2-imdb")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(**inputs).logits
>>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0])
>>> model.config.id2label[predicted_class_id]
'LABEL_1'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = TFAlbertForSequenceClassification.from_pretrained("vumichien/albert-base-v2-imdb", num_labels=num_labels)
>>> labels = tf.constant(1)
>>> loss = model(**inputs, labels=labels).loss
>>> round(float(loss), 2)
0.12
TFAlbertForMultipleChoice
class transformers.TFAlbertForMultipleChoice
( config: AlbertConfig *inputs **kwargs )
参数
config
(AlbertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型在顶部具有多选分类头(池化输出顶部的线性层和 softmax),例如用于 RocStories/SWAG 任务。
此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以了解与一般用法和行为相关的所有事项。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(类似于 PyTorch 模型),或
-
将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,您应该可以“轻松使用” - 只需以model.fit()
支持的任何格式传递您的输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 Keras Functional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
-
一个仅包含
input_ids
的张量,没有其他内容:model(input_ids)
-
一个长度不定的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像将输入传递给任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为(batch_size, num_choices, sequence_length)
的Numpy
数组或tf.Tensor
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, num_choices, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]
范围内:-
1 表示未被
masked
的标记, -
0 表示被
masked
的标记。
什么是注意力掩码?
-
-
token_type_ids
(形状为(batch_size, num_choices, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选定在[0, 1]
范围内:-
0 对应于句子 A的标记,
-
1 对应于句子 B的标记。
什么是标记类型 ID?
-
-
position_ids
(形状为(batch_size, num_choices, sequence_length)
的Numpy
数组或tf.Tensor
,可选)— 每个输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]
。什么是位置 ID?
-
head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy
数组或tf.Tensor
,可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
范围内:-
1 表示头部未被
masked
, -
0 表示头部被
masked
。
-
-
inputs_embeds
(形状为(batch_size, num_choices, sequence_length, hidden_size)
的tf.Tensor
,可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 -
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
,可选,默认为False
)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 -
labels
(形状为(batch_size,)
的tf.Tensor
,可选)— 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices]
范围内,其中num_choices
是输入张量第二维的大小。(参见上面的input_ids
)
返回
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFMultipleChoiceModelOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或当config.return_dict=False
时)包含根据配置(AlbertConfig)和输入的各种元素。
-
loss
(形状为(batch_size, )的tf.Tensor
,可选,当提供labels
时返回)— 分类损失。 -
logits
(形状为(batch_size, num_choices)
的tf.Tensor
)— num_choices是输入张量的第二维的大小。(参见input_ids)分类分数(SoftMax 之前)。
-
hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。模型在每一层输出的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForMultipleChoice 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFAlbertForMultipleChoice
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = TFAlbertForMultipleChoice.from_pretrained("albert-base-v2")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="tf", padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs) # batch size is 1
>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits
TFAlbertForTokenClassification
class transformers.TFAlbertForTokenClassification
( config: AlbertConfig *inputs **kwargs )
参数
config
(AlbertConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
在 Albert 模型顶部带有一个标记分类头部(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。
此模型继承自 TFPreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(类似于 PyTorch 模型),或
-
将所有输入作为列表、元组或字典的第一个位置参数。
支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于这种支持,当使用model.fit()
等方法时,应该“只需工作” - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外(如在使用 KerasFunctional
API 创建自己的层或模型时)使用第二种格式,有三种可能性可用于收集第一个位置参数中的所有输入张量:
-
仅具有
input_ids
的单个张量,没有其他内容:model(input_ids)
-
按照文档字符串中给定的顺序,长度可变的输入张量列表:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFTokenClassifierOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的Numpy array
或tf.Tensor
) — 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的Numpy array
或tf.Tensor
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:-
1 表示未被“掩码”的标记,
-
对于被“掩码”(masked)的标记。
注意力掩码是什么?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy array
或tf.Tensor
,可选) — 段标记索引,用于指示输入的第一部分和第二部分。索引选择在[0, 1]
之间:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(形状为(batch_size, sequence_length)
的Numpy array
或tf.Tensor
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。位置 ID 是什么?
-
head_mask
(形状为(num_heads,)
或(num_layers, num_heads)
的Numpy array
或tf.Tensor
,可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:-
1 表示头部未被“掩码”,
-
0 表示头部是
masked
。
-
-
inputs_embeds
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权来将input_ids
索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。 -
return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
,可选,默认为False
) — 是否在训练模式中使用模型(某些模块如 dropout 模块在训练和评估之间有不同的行为)。 -
labels
(tf.Tensor
,形状为(batch_size, sequence_length)
,可选) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。
返回
transformers.modeling_tf_outputs.TFTokenClassifierOutput 或tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFTokenClassifierOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(AlbertConfig)和输入。
-
loss
(tf.Tensor
,形状为(n,)
,可选,当提供labels
时返回,其中 n 是未屏蔽标签的数量) — 分类损失。 -
logits
(tf.Tensor
,形状为(batch_size, sequence_length, config.num_labels)
) — 分类分数(SoftMax 之前)。 -
hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。每层模型的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
TFAlbertForTokenClassification 的前向方法,覆盖__call__
特殊方法。
虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFAlbertForTokenClassification
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = TFAlbertForTokenClassification.from_pretrained("albert-base-v2")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="tf"
... )
>>> logits = model(**inputs).logits
>>> predicted_token_class_ids = tf.math.argmax(logits, axis=-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t] for t in predicted_token_class_ids[0].numpy().tolist()]
>>> labels = predicted_token_class_ids
>>> loss = tf.math.reduce_mean(model(**inputs, labels=labels).loss)
TFAlbertForQuestionAnswering
class transformers.TFAlbertForQuestionAnswering
( config: AlbertConfig *inputs **kwargs )
参数
config
(AlbertConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
Albert 模型在顶部具有用于类似 SQuAD 的抽取式问答任务的跨度分类头(在隐藏状态输出的顶部有一个线性层来计算跨度起始对数
和跨度结束对数
)。
此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(类似于 PyTorch 模型),或
-
将所有输入作为列表、元组或字典。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()
等方法时,您应该可以“轻松使用” - 只需以model.fit()
支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
-
只有
input_ids
的单个张量,没有其他内容:model(input_ids)
-
一个长度可变的列表,按照文档字符串中给定的顺序包含一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None token_type_ids: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None start_positions: np.ndarray | tf.Tensor | None = None end_positions: np.ndarray | tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
)- 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.
call
()和 PreTrainedTokenizer.encode()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值为[0, 1]
:-
对于
未被掩码
的标记为 1, -
对于
被掩码
的标记为 0。
什么是注意力掩码?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的Numpy
数组或tf.Tensor
,可选)- 指示输入的第一部分和第二部分的段标记索引。索引选择在[0, 1]
中:-
0 对应于 句子 A 标记。
-
1 对应于 句子 B 标记。
什么是标记类型 ID?
-
-
position_ids
(Numpy array
或tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。什么是位置 ID?
-
head_mask
(Numpy array
或tf.Tensor
of shape(num_heads,)
或(num_layers, num_heads)
, optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]
:-
1 表示头部未被
masked
, -
0 表示头部被
masked
。
-
-
inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的attentions
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states
。此参数仅在急切模式下可用,在图模式下将使用配置中的值。 -
return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可以在急切模式中使用,在图模式中该值将始终设置为 True。 -
training
(bool
, optional, 默认为False
) — 是否在训练模式下使用模型(一些模块,如丢弃模块,在训练和评估之间有不同的行为)。 -
start_positions
(tf.Tensor
of shape(batch_size,)
, optional) — 用于计算标记分类损失的标记范围开始位置(索引)的标签。位置被夹紧到序列的长度(sequence_length
)。序列外的位置不会被考虑在内以计算损失。 -
end_positions
(tf.Tensor
of shape(batch_size,)
, optional) — 用于计算标记范围结束位置(索引)的标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length
)。序列外的位置不会被考虑在内以计算损失。
返回
transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFQuestionAnsweringModelOutput 或一个 tf.Tensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包括根据配置(AlbertConfig)和输入的不同元素。
-
loss
(tf.Tensor
of shape(batch_size, )
, optional, 当提供start_positions
和end_positions
时返回) — 总跨度提取损失是开始和结束位置的交叉熵之和。 -
start_logits
(tf.Tensor
of shape(batch_size, sequence_length)
) — 跨度开始分数(SoftMax 之前)。 -
end_logits
(tf.Tensor
of shape(batch_size, sequence_length)
) — 跨度结束分数(SoftMax 之前)。 -
hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。模型在每个层的输出以及初始嵌入输出的隐藏状态。
-
attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每个层一个)。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFAlbertForQuestionAnswering 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFAlbertForQuestionAnswering
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("vumichien/albert-base-v2-squad2")
>>> model = TFAlbertForQuestionAnswering.from_pretrained("vumichien/albert-base-v2-squad2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="tf")
>>> outputs = model(**inputs)
>>> answer_start_index = int(tf.math.argmax(outputs.start_logits, axis=-1)[0])
>>> answer_end_index = int(tf.math.argmax(outputs.end_logits, axis=-1)[0])
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens)
'a nice puppet'
>>> # target is "nice puppet"
>>> target_start_index = tf.constant([12])
>>> target_end_index = tf.constant([13])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = tf.math.reduce_mean(outputs.loss)
>>> round(float(loss), 2)
7.36
JAX 隐藏 JAX 内容
FlaxAlbertModel
class transformers.FlaxAlbertModel
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(AlbertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
裸 Albert 模型变压器输出原始隐藏状态,没有特定的头部在顶部。
这个模型继承自 FlaxPreTrainedModel。检查超类文档以了解库实现的所有模型的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
这个模型也是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。
最后,这个模型支持内在的 JAX 特性,比如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)- 词汇表中输入序列令牌的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 避免在填充令牌索引上执行注意力的掩码。掩码值在[0, 1]
中选择:-
对于未被“掩码”的令牌为 1,
-
对于被“掩码”的令牌为 0。
什么是注意力掩码?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 段令牌索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:-
0 对应于句子 A令牌,
-
1 对应于句子 B令牌。
什么是令牌类型 ID?
-
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个输入序列令牌在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
return_dict
(bool
,可选)- 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPooling 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含根据配置(AlbertConfig)和输入的不同元素。
-
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
)- 模型最后一层的隐藏状态序列。 -
pooler_output
(形状为(batch_size, hidden_size)
的jnp.ndarray
)- 序列第一个令牌(分类令牌)的最后一层隐藏状态,进一步由线性层和 Tanh 激活函数处理。线性层的权重是在预训练期间从下一个句子预测(分类)目标中训练的。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出+一个用于每层的输出)。模型在每一层的输出隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertModel
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = FlaxAlbertModel.from_pretrained("albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxAlbertForPreTraining
class transformers.FlaxAlbertForPreTraining
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(AlbertConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)— 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了
dtype
,则所有计算将使用给定的dtype
执行。“请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。”
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
Albert 模型,在预训练期间在顶部有两个头部:一个掩码语言建模
头部和一个句子顺序预测(分类)
头部。
此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。
最后,此模型支持 JAX 的固有特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)— 词汇表中输入序列令牌的索引。可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。输入 ID 是什么?
-
attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 用于避免在填充令牌索引上执行注意力的蒙版。蒙版值在[0, 1]
中选择:-
对于未被“掩码”的令牌,为 1。
-
对于被“掩码”的令牌,为 0。
注意力蒙版是什么?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 段令牌索引,用于指示输入的第一部分和第二部分。索引在[0, 1]
中选择:-
0 对应于句子 A令牌,
-
1 对应于句子 B令牌。
令牌类型 ID 是什么?
-
-
position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput
或tuple(torch.FloatTensor)
一个transformers.models.albert.modeling_flax_albert.FlaxAlbertForPreTrainingOutput
或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的各种元素。
-
prediction_logits
(jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。 -
sop_logits
(jnp.ndarray
of shape(batch_size, 2)
) — 下一个序列预测(分类)头部的预测分数(SoftMax 之前的 True/False 连续性分数)。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。模型在每一层输出处的隐藏状态以及初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法,覆盖__call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForPreTraining
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = FlaxAlbertForPreTraining.from_pretrained("albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.sop_logits
FlaxAlbertForMaskedLM
class transformers.FlaxAlbertForMaskedLM
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(AlbertConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了
dtype
,则所有计算将使用给定的dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
在顶部带有语言建模
头部的 Albert 模型。
此模型继承自 FlaxPreTrainedModel。检查超类文档,了解库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以获取与一般用法和行为相关的所有事项。
最后,此模型支持内在的 JAX 功能,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:-
1 表示
未被掩码
的标记, -
0 表示
被掩码
的标记。
什么是注意力掩码?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
return_dict
(bool
,可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMaskedLMOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含根据配置(AlbertConfig)和输入而异的各种元素。
-
logits
(形状为(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。模型在每一层输出处的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法覆盖了__call__
特殊方法。
尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForMaskedLM
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2", revision="refs/pr/11")
>>> model = FlaxAlbertForMaskedLM.from_pretrained("albert-base-v2", revision="refs/pr/11")
>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxAlbertForSequenceClassification
class transformers.FlaxAlbertForSequenceClassification
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(AlbertConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)- 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,则所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
Albert 模型变压器,顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为其所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以获取与一般用法和行为相关的所有内容。
最后,此模型支持 JAX 的固有功能,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)- 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:-
1 对应于未被掩码的标记,
-
对于被
masked
的标记,值为 0。
什么是注意力掩码?
-
-
token_type_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
之间:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的不同元素。
-
logits
(jnp.ndarray
,形状为(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(在 SoftMax 之前)。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每一层的输出)。模型在每一层输出的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = FlaxAlbertForSequenceClassification.from_pretrained("albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxAlbertForMultipleChoice
class transformers.FlaxAlbertForMultipleChoice
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(AlbertConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了
dtype
,则所有计算将使用给定的数据类型执行。请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。
如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
Albert 模型,顶部带有多选分类头(顶部是汇总输出和 softmax 的线性层),例如用于 RocStories/SWAG 任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。
最后,此模型支持 JAX 的固有功能,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
)— 词汇表中输入序列 token 的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 IDs?
-
attention_mask
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
,可选)— 避免在填充 token 索引上执行注意力的掩码。掩码值选择在[0, 1]
中:-
对于未被
masked
的 token,值为 1, -
对于被
masked
的 token,值为 0。
什么是注意力掩码?
-
-
token_type_ids
(形状为(batch_size, num_choices, sequence_length)
的numpy.ndarray
,可选)— 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]
中:-
值为 0 表示句子 A的 token,
-
值为 1 表示句子 B的 token。
什么是 token type IDs?
-
-
position_ids
(numpy.ndarray
,形状为(batch_size, num_choices, sequence_length)
,可选的) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
return_dict
(bool
,可选的) — 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxMultipleChoiceModelOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包含根据配置(AlbertConfig)和输入的各种元素。
-
logits
(jnp.ndarray
,形状为(batch_size, num_choices)
) — num_choices是输入张量的第二维度。(参见上面的input_ids)。分类分数(SoftMax 之前)。
-
hidden_states
(tuple(jnp.ndarray)
, 可选的, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。模型在每个层的输出以及初始嵌入输出的隐藏状态。
-
attentions
(tuple(jnp.ndarray)
, 可选的, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。在自注意力头中用于计算加权平均值的注意力 softmax 之后的注意力权重。
FlaxAlbertPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForMultipleChoice
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = FlaxAlbertForMultipleChoice.from_pretrained("albert-base-v2")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="jax", padding=True)
>>> outputs = model(**{k: v[None, :] for k, v in encoding.items()})
>>> logits = outputs.logits
FlaxAlbertForTokenClassification
transformers.FlaxAlbertForTokenClassification
类
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(AlbertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
, 可选的, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的
dtype
执行。请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。
如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
在顶部带有标记分类头的 Albert 模型(隐藏状态输出顶部的线性层),例如用于命名实体识别(NER)任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如从 PyTorch 模型下载、保存和转换权重)。
此模型还是一个flax.linen.Module子类。将其用作常规的 Flax 亚麻模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。
最后,此模型支持内在的 JAX 功能,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxTokenClassifierOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)— 词汇中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。输入 ID 是什么?
-
attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 用于避免在填充标记索引上执行注意力的蒙版。蒙版值选在[0, 1]
中:-
1 对应于未被掩蔽的标记,
-
对于被
masked
的标记。
注意力蒙版是什么?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 指示输入的第一部分和第二部分的段标记索引。索引选在[0, 1]
中:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
什么是标记类型 ID?
-
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
return_dict
(bool
,可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxTokenClassifierOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(AlbertConfig)和输入。
-
logits
(形状为(batch_size, sequence_length, config.num_labels)
的jnp.ndarray
)— 分类分数(SoftMax 之前)。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。模型在每个层的输出以及初始嵌入输出的隐藏状态。
-
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法重写了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForTokenClassification
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = FlaxAlbertForTokenClassification.from_pretrained("albert-base-v2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
FlaxAlbertForQuestionAnswering
class transformers.FlaxAlbertForQuestionAnswering
( config: AlbertConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(AlbertConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。 -
dtype
(jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上), 和jax.numpy.bfloat16
(在 TPU 上) 中的一个。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的
dtype
执行。请注意,这只指定了计算的数据类型,不影响模型参数的数据类型。
如果您希望更改模型参数的数据类型,请参阅 to_fp16() 和 to_bf16()。
Albert 模型,顶部带有用于提取问答任务的跨度分类头,如 SQuAD(在隐藏状态输出顶部的线性层,用于计算 span start logits
和 span end logits
)。
这个模型继承自 FlaxPreTrainedModel。查看超类文档以了解库实现的通用方法,例如从 PyTorch 模型下载、保存和转换权重。
这个模型也是一个 flax.linen.Module 子类。将其用作常规的 Flax linen 模块,并参考 Flax 文档以了解与一般用法和行为相关的所有事项。
最后,这个模型支持 JAX 的内在特性,例如:
__call__
( input_ids attention_mask = None token_type_ids = None position_ids = None params: dict = None dropout_rng: PRNGKey = None train: bool = False output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
)- 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。输入 ID 是什么?
-
attention_mask
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 用于避免在填充标记索引上执行注意力的掩码。选择在[0, 1]
中的掩码值:-
对于“未屏蔽”的标记,为 1,
-
对于“屏蔽”的标记为 0。
注意掩码是什么?
-
-
token_type_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 段令牌索引,指示输入的第一部分和第二部分。索引在[0, 1]
中选择:-
0 对应于句子 A标记,
-
1 对应于句子 B标记。
令牌类型 ID 是什么?
-
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxQuestionAnsweringModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(AlbertConfig)和输入的各种元素。
-
start_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)- 跨度开始分数(SoftMax 之前)。 -
end_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)- 跨度结束分数(SoftMax 之前)。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出+一个用于每个层的输出)。模型在每一层输出的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
FlaxAlbertPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxAlbertForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("albert-base-v2")
>>> model = FlaxAlbertForQuestionAnswering.from_pretrained("albert-base-v2")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
BART
原始文本:
huggingface.co/docs/transformers/v4.37.2/en/model_doc/bart
概述
Bart 模型是由 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov 和 Luke Zettlemoyer 在 2019 年 10 月 29 日提出的,题为 BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension。
根据摘要,
-
Bart 使用标准的 seq2seq/机器翻译架构,具有双向编码器(类似于 BERT)和从左到右的解码器(类似于 GPT)。
-
预训练任务涉及随机打乱原始句子的顺序和一种新颖的填充方案,其中文本段被替换为单个掩码标记。
-
BART 在文本生成的微调时特别有效,但也适用于理解任务。它在 GLUE 和 SQuAD 上与 RoBERTa 的性能相匹配,实现了一系列抽象对话、问答和总结任务的最新成果,ROUGE 提升高达 6 个百分点。
这个模型是由sshleifer贡献的。作者的代码可以在这里找到。
使用提示:
-
BART 是一个具有绝对位置嵌入的模型,因此通常建议在右侧而不是左侧填充输入。
-
具有编码器和解码器的序列到序列模型。编码器接收到被损坏版本的标记,解码器接收到原始标记(但有一个掩码来隐藏未来的单词,就像常规的 transformers 解码器)。以下转换的组合应用于编码器的预训练任务:
-
掩盖随机标记(就像在 BERT 中)
-
删除随机标记
-
用单个掩码标记掩盖 k 个标记的范围(0 个标记的范围是插入一个掩码标记)
-
排列句子
-
旋转文档,使其从特定标记开始
-
实现注意事项
-
Bart 不使用
token_type_ids
进行序列分类。使用 BartTokenizer 或 encode() 来获得正确的分割。 -
BartModel 的前向传递将创建
decoder_input_ids
,如果它们没有被传递。这与一些其他建模 API 不同。这个特性的一个典型用例是掩码填充。 -
当
forced_bos_token_id=0
时,模型预测应该与原始实现相同。然而,这仅在您传递给fairseq.encode
的字符串以空格开头时才有效。 -
generate() 应该用于像总结这样的有条件生成任务,可以查看文档字符串中的示例。
-
加载 facebook/bart-large-cnn 权重的模型将没有
mask_token_id
,也无法执行掩码填充任务。
掩码填充
facebook/bart-base
和 facebook/bart-large
检查点可用于填充多个标记掩码。
from transformers import BartForConditionalGeneration, BartTokenizer
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
batch = tok(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"])
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
"UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
]
资源
一个官方的 Hugging Face 和社区(由🌎表示)资源列表,可以帮助您开始使用 BART。如果您有兴趣提交一个资源以包含在这里,请随时打开一个 Pull Request,我们会进行审查!资源应该理想地展示一些新的东西,而不是重复现有的资源。
总结
-
一篇关于分布式训练:使用🤗 Transformers 和 Amazon SageMaker 训练 BART/T5 进行摘要的博客文章。
-
一个关于如何使用 fastai 和 blurr微调 BART 进行摘要的笔记本。🌎
-
一个关于如何使用 Trainer 类微调 BART 以在两种语言中进行摘要的笔记本。🌎
-
FlaxBartForConditionalGeneration 受到这个示例脚本的支持。
-
一个关于如何使用 Hugging Face
datasets
对象训练 BartForConditionalGeneration 的示例可以在这个论坛讨论中找到。 -
摘要章节的🤗 Hugging Face 课程。
-
摘要任务指南
填充-掩码
-
掩码语言建模章节的🤗 Hugging Face 课程。
-
掩码语言建模任务指南
翻译
-
一个关于如何使用 Seq2SeqTrainer微调 mBART 以进行印地语到英语翻译的笔记本。🌎
-
翻译任务指南
另请参阅:
BartConfig
class transformers.BartConfig
( vocab_size = 50265 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 classifier_dropout = 0.0 scale_embedding = False use_cache = True num_labels = 3 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 is_encoder_decoder = True decoder_start_token_id = 2 forced_eos_token_id = 2 **kwargs )
参数
-
vocab_size
(int
, optional, defaults to 50265) — BART 模型的词汇表大小。定义了在调用 BartModel 或 TFBartModel 时可以由inputs_ids
表示的不同标记数量。 -
d_model
(int
, optional, defaults to 1024) — 层和池化器层的维度。 -
encoder_layers
(int
, optional, defaults to 12) — 编码器层数。 -
decoder_layers
(int
, optional, defaults to 12) — 解码器层数。 -
encoder_attention_heads
(int
, optional, defaults to 16) — Transformer 编码器中每个注意力层的注意力头数。 -
decoder_attention_heads
(int
, optional, defaults to 16) — Transformer 解码器中每个注意力层的注意力头数。 -
decoder_ffn_dim
(int
, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。 -
encoder_ffn_dim
(int
, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。 -
activation_function
(str
orfunction
, optional, defaults to"gelu"
) — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu"
,"relu"
,"silu"
和"gelu_new"
。 -
dropout
(float
, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。 -
attention_dropout
(float
, optional, defaults to 0.0) — 注意力概率的丢弃比率。 -
activation_dropout
(float
, optional, defaults to 0.0) — 全连接层内激活的丢弃比率。 -
classifier_dropout
(float
, optional, defaults to 0.0) — 分类器的丢弃比率。 -
max_position_embeddings
(int
, optional, defaults to 1024) — 此模型可能会使用的最大序列长度。通常将其设置为较大的值以防万一(例如,512、1024 或 2048)。 -
init_std
(float
, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。 -
encoder_layerdrop
(float
, optional, defaults to 0.0) — 编码器的 LayerDrop 概率。有关更多详细信息,请参阅 LayerDrop 论文)。 -
decoder_layerdrop
(float
, optional, defaults to 0.0) — 解码器的 LayerDrop 概率。有关更多详细信息,请参阅 LayerDrop paper)。 -
scale_embedding
(bool
, optional, defaults toFalse
) — 通过将 d_model 除以 sqrt(d_model)来缩放嵌入。 -
use_cache
(bool
, optional, defaults toTrue
) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。 -
num_labels
(int
, optional, defaults to 3) — 在 BartForSequenceClassification 中使用的标签数。 -
forced_eos_token_id
(int
, optional, defaults to 2) — 当达到max_length
时,强制作为最后生成的标记的标记 ID。通常设置为eos_token_id
。
这是用于存储 BartModel 配置的配置类。它用于根据指定的参数实例化 BART 模型,定义模型架构。使用默认值实例化配置将产生类似于 BART facebook/bart-large 架构的配置。
配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。
示例:
>>> from transformers import BartConfig, BartModel
>>> # Initializing a BART facebook/bart-large style configuration
>>> configuration = BartConfig()
>>> # Initializing a model (with random weights) from the facebook/bart-large style configuration
>>> model = BartModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BartTokenizer
class transformers.BartTokenizer
( vocab_file merges_file errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False **kwargs )
参数
-
vocab_file
(str
) — 词汇文件的路径。 -
merges_file
(str
) — 合并文件的路径。 -
errors
(str
, optional, defaults to"replace"
) — 解码字节为 UTF-8 时要遵循的范例。有关更多信息,请参阅bytes.decode。 -
bos_token
(str
, optional, defaults to"<s>"
) — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。在使用特殊标记构建序列时,这不是用于序列开头的标记。使用的标记是
cls_token
。 -
eos_token
(str
, optional, defaults to"</s>"
) — 序列结束标记。在使用特殊标记构建序列时,这不是用于序列结尾的标记。使用的标记是
sep_token
。 -
sep_token
(str
, optional, defaults to"</s>"
) — 分隔符标记,在从多个序列构建序列时使用,例如,用于序列分类的两个序列或用于文本和问题的问题回答。它也用作使用特殊标记构建的序列的最后一个标记。 -
cls_token
(str
, optional, defaults to"<s>"
) — 在进行序列分类(整个序列的分类,而不是每个标记的分类)时使用的分类器标记。在使用特殊标记构建序列时,它是序列的第一个标记。 -
unk_token
(str
, optional, defaults to"<unk>"
) — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。 -
pad_token
(str
, optional, defaults to"<pad>"
) — 用于填充的标记,例如在批处理不同长度的序列时。 -
mask_token
(str
, optional, defaults to"<mask>"
) — 用于屏蔽值的标记。在训练此模型时使用的标记为掩码语言建模。这是模型将尝试预测的标记。 -
add_prefix_space
(bool
, optional, 默认为False
) — 是否在输入前添加一个初始空格。这允许将前导单词视为任何其他单词。(BART 分词器通过前面的空格检测单词的开头)。
构建一个 BART 分词器,它类似于 ROBERTa 分词器,使用字节级字节对编码。
此分词器已经训练成将空格视为标记的一部分(有点像 sentencepiece),因此一个单词将
在句子开头(没有空格)或不是时,将以不同方式编码:
>>> from transformers import BartTokenizer
>>> tokenizer = BartTokenizer.from_pretrained("facebook/bart-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
您可以通过在实例化此分词器时或在对某些文本调用它时传递add_prefix_space=True
来避免这种行为,但由于模型不是以这种方式进行预训练的,因此可能会导致性能下降。
当与is_split_into_words=True
一起使用时,此分词器将在每个单词之前添加一个空格(即使是第一个单词)。
此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
build_inputs_with_special_tokens
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — 将添加特殊标记的 ID 列表。 -
token_ids_1
(List[int]
, optional) — 可选的第二个 ID 列表,用于序列对。
返回
List[int]
带有适当特殊标记的 input IDs 列表。
通过连接和添加特殊标记,为序列分类任务从序列或序列对构建模型输入。BART 序列的格式如下:
-
单个序列:
<s> X </s>
-
序列对:
<s> A </s></s> B </s>
convert_tokens_to_string
( tokens )
将一系列标记(字符串)转换为单个字符串。
create_token_type_ids_from_sequences
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — ID 列表。 -
token_ids_1
(List[int]
, optional) — 可选的第二个 ID 列表,用于序列对。
返回
List[int]
零列表。
从传递的两个序列中创建一个用于序列对分类任务的掩码。BART 不使用标记类型 ID,因此返回一个零列表。
get_special_tokens_mask
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
) — ID 列表。 -
token_ids_1
(List[int]
, optional) — 可选的第二个 ID 列表,用于序列对。 -
already_has_special_tokens
(bool
, optional, 默认为False
) — 标记列表是否已经格式化为模型的特殊标记。
返回
List[int]
一个整数列表,范围为[0, 1]:1 表示特殊标记,0 表示序列标记。
从没有添加特殊标记的标记列表中检索序列 ID。当使用分词器的prepare_for_model
方法添加特殊标记时,将调用此方法。
BartTokenizerFast
class transformers.BartTokenizerFast
( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False trim_offsets = True **kwargs )
参数
-
vocab_file
(str
) — 词汇文件的路径。 -
merges_file
(str
) — 合并文件的路径。 -
errors
(str
, optional, 默认为"replace"
) — 解码字节为 UTF-8 时要遵循的范例。有关更多信息,请参阅bytes.decode。 -
bos_token
(str
,可选,默认为"<s>"
)— 在预训练期间使用的序列开头标记。可用作序列分类器标记。构建序列时使用特殊标记时,并非用于序列开头的标记。使用的标记是
cls_token
。 -
eos_token
(str
,可选,默认为"</s>"
)— 序列结尾标记。构建序列时使用特殊标记时,并非用于序列结尾的标记。使用的标记是
sep_token
。 -
sep_token
(str
,可选,默认为"</s>"
)— 分隔符标记,用于从多个序列构建序列,例如用于序列分类的两个序列或用于问题回答的文本和问题。它还用作使用特殊标记构建的序列的最后一个标记。 -
cls_token
(str
,可选,默认为"<s>"
)— 用于进行序列分类时使用的分类器标记(对整个序列进行分类,而不是每个标记进行分类)。当使用特殊标记构建序列时,它是序列的第一个标记。 -
unk_token
(str
,可选,默认为"<unk>"
)— 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。 -
pad_token
(str
,可选,默认为"<pad>"
)— 用于填充的标记,例如在批处理不同长度的序列时。 -
mask_token
(str
,可选,默认为"<mask>"
)— 用于屏蔽值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。 -
add_prefix_space
(bool
,可选,默认为False
)— 是否在输入前添加一个空格。这允许将前导单词视为任何其他单词。(BART 标记器通过前面的空格检测单词的开头)。 -
trim_offsets
(bool
,可选,默认为True
)— 后处理步骤是否应修剪偏移量以避免包含空格。
构建一个“快速”BART 标记器(由 HuggingFace 的tokenizers库支持),派生自 GPT-2 标记器,使用字节级字节对编码。
此标记器已经训练成将空格视为标记的一部分(有点像 sentencepiece),因此一个单词将
编码方式不同,无论它是否位于句子开头(无空格)或不是:
>>> from transformers import BartTokenizerFast
>>> tokenizer = BartTokenizerFast.from_pretrained("facebook/bart-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
您可以通过在实例化此标记器时或在对某些文本调用它时传递add_prefix_space=True
来避免这种行为,但由于该模型不是以这种方式进行预训练的,因此可能会导致性能下降。
当与is_split_into_words=True
一起使用时,此标记器需要使用add_prefix_space=True
进行实例化。
此标记器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。
create_token_type_ids_from_sequences
( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]
参数
-
token_ids_0
(List[int]
)— ID 列表。 -
token_ids_1
(List[int]
,可选)— 序列对的可选第二个 ID 列表。
返回值
List[int]
零的列表。
从传递的两个序列创建一个用于序列对分类任务的掩码。BART 不使用标记类型 ID,因此返回一个零的列表。
PytorchHide Pytorch 内容
BartModel
class transformers.BartModel
( config: BartConfig )
参数
config
(BartConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
裸的 BART 模型输出原始隐藏状态,没有特定的头部。该模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型还是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:-
对于未被“掩码”的标记,值为 1。
-
对于被“掩码”的标记,值为 0。
什么是注意力掩码?
-
-
decoder_input_ids
(torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.
call
()。什么是解码器输入 ID?
Bart 使用
eos_token_id
作为生成decoder_input_ids
的起始标记。如果使用了past_key_values
,则只需选择最后的decoder_input_ids
输入(请参阅past_key_values
)。对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以便进行去噪预训练,遵循论文中的方法。 -
decoder_attention_mask
(torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) — 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。因果掩码也将默认使用。如果要更改填充行为,应阅读
modeling_bart._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图表 1。 -
head_mask
(torch.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 用于使编码器中注意力模块的选定头部失效的掩码。掩码值选择在[0, 1]
之间:-
1 表示头部未被“掩码”。
-
0 表示头部被“掩码”。
-
-
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)- 用于使解码器中注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
中:-
1 表示头部未被掩盖,
-
0 表示头部被掩盖。
-
-
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)- 用于使解码器中交叉注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
中:-
1 表示头部未被掩盖,
-
0 表示头部被掩盖。
-
-
encoder_outputs
(tuple(tuple(torch.FloatTensor)
,可选)- 元组包括(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。
如果使用了
past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 -
decoder_inputs_embeds
(形状为(batch_size, target_sequence_length, hidden_size)
的torch.FloatTensor
,可选)- 可选地,您可以选择直接传递嵌入表示而不是传递decoder_input_ids
。如果使用了past_key_values
,则只有最后的decoder_inputs_embeds
需要输入(参见past_key_values
)。如果您想要更多控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 -
use_cache
(bool
,可选)- 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。 -
output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_outputs.Seq2SeqModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包括根据配置(BartConfig)和输入的不同元素。
-
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
)—模型解码器最后一层的隐藏状态序列的输出。如果使用
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)—长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。 -
decoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)—形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的一个,加上每层的一个)。解码器每层输出的隐藏状态以及可选的初始嵌入输出。
-
decoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)—模型编码器最后一层的隐藏状态序列的输出。 -
encoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)—形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的一个,加上每层的一个)。编码器每层输出的隐藏状态以及可选的初始嵌入输出。
-
encoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)—形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
BartModel 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个函数,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, BartModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartModel.from_pretrained("facebook/bart-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
BartForConditionalGeneration
class transformers.BartForConditionalGeneration
( config: BartConfig )
参数
config
(BartConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
具有语言建模头的 BART 模型。可用于摘要。此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 输入序列标记在词汇表中的索引。默认情况下会忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入标记?
-
attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:-
1 用于“未掩码”的标记,
-
0 用于“掩码”标记的标记。
什么是注意力掩码?
-
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)— 解码器输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是解码器输入标记?
Bart 使用
eos_token_id
作为decoder_input_ids
生成的起始标记。如果使用past_key_values
,则可选择仅输入最后的decoder_input_ids
(参见past_key_values
)。对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以用于去噪预训练,遵循论文中的方法。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)— 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。默认还将使用因果掩码。如果要更改填充行为,您应该阅读
modeling_bart._prepare_decoder_attention_mask
并根据您的需求进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
head_mask
(torch.Tensor
of shape(encoder_layers, encoder_attention_heads)
, optional) — 用于将编码器中注意力模块的选定头部置零的掩码。掩码值选定在[0, 1]
中:-
1 表示头部未被掩盖,
-
0 表示头部被掩盖。
-
-
decoder_head_mask
(torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于将解码器中注意力模块的选定头部置零的掩码。掩码值选定在[0, 1]
中:-
1 表示头部未被掩盖,
-
0 表示头部被掩盖。
-
-
cross_attn_head_mask
(torch.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于将解码器中交叉注意力模块的选定头部置零的掩码。掩码值选定在[0, 1]
中:-
1 表示头部未被掩盖,
-
0 表示头部被掩盖。
-
-
encoder_outputs
(tuple(tuple(torch.FloatTensor)
, optional) — 元组包括(last_hidden_state
, optional:hidden_states
, optional:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,optional)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见
past_key_values
输入)。如果使用了
past_key_values
,用户可以选择仅输入最后一个形状为(batch_size, 1)
的decoder_input_ids
(即那些没有将其过去的键值状态提供给此模型的输入)而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 -
inputs_embeds
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 -
decoder_inputs_embeds
(torch.FloatTensor
of shape(batch_size, target_sequence_length, hidden_size)
, optional) — 可选地,您可以选择直接传递嵌入表示而不是传递decoder_input_ids
。如果使用了past_key_values
,则可以选择仅输入最后一个decoder_inputs_embeds
(请参见past_key_values
)。如果您想要更多控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 -
use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(请参见past_key_values
)。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。 -
labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
范围内,或者为-100(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
范围内的标记。
返回
transformers.modeling_outputs.Seq2SeqLMOutput 或tuple(torch.FloatTensor)
transformers.modeling_outputs.Seq2SeqLMOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(BartConfig)和输入的各种元素。
-
loss
(torch.FloatTensor
of shape(1,)
, 可选, 当提供labels
时返回) — 语言建模损失。 -
logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。
-
decoder_hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。解码器在每个层的输出以及初始嵌入输出的隐藏状态。
-
decoder_attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(torch.FloatTensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, 可选) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(torch.FloatTensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(一个用于嵌入层的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。编码器每层输出的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(torch.FloatTensor)
, optional, 当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
BartForConditionalGeneration 的前向方法,覆盖了 __call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
摘要示例:
>>> from transformers import AutoTokenizer, BartForConditionalGeneration
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="pt")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=0, max_length=20)
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'PG&E scheduled the blackouts in response to forecasts for high winds amid dry conditions'
填充掩码示例:
>>> from transformers import AutoTokenizer, BartForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['not', 'good', 'healthy', 'great', 'very']
BartForSequenceClassification
class transformers.BartForSequenceClassification
( config: BartConfig **kwargs )
参数
config
(BartConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。
Bart 模型,顶部带有序列分类/头(汇聚输出之上的线性层),例如用于 GLUE 任务。
此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(torch.LongTensor
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(torch.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:-
对于未被掩码的标记,值为 1,
-
对于被掩码的标记,值为 0。
什么是注意力掩码?
-
-
decoder_input_ids
(torch.LongTensor
of shape(batch_size, target_sequence_length)
, optional) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.
call
()。什么是解码器输入 ID?
Bart 使用
eos_token_id
作为decoder_input_ids
生成的起始标记。如果使用past_key_values
,可选择仅输入最后的decoder_input_ids
(参见past_key_values
)。对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,用于去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)— 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。如果要更改填充行为,应阅读
modeling_bart._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
head_mask
(形状为(encoder_layers, encoder_attention_heads)
的torch.Tensor
,可选)— 用于使编码器中注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
中:-
1 表示头部未被“掩盖”,
-
0 表示头部被“掩盖”。
-
-
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)— 用于使解码器中注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
中:-
1 表示头部未被“掩盖”,
-
0 表示头部被“掩盖”。
-
-
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)— 用于使解码器中交叉注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]
中:-
1 表示头部未被“掩盖”,
-
0 表示头部被“掩盖”。
-
-
encoder_outputs
(元组(元组(torch.FloatTensor
)可选)— 元组由(last_hidden_state
,可选:hidden_states
,可选:attentions
)组成,last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力。 -
past_key_values
(元组(元组(torch.FloatTensor
)可选),当传递use_cache=True
或当config.use_cache=True
时返回)— 长度为config.n_layers
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。如果使用
past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(即那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,可以直接传递嵌入表示,而不是传递input_ids
。如果要更好地控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这很有用。 -
decoder_inputs_embeds
(形状为(batch_size, target_sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 可选地,可以直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用past_key_values
,可选择仅输入最后的decoder_inputs_embeds
(参见past_key_values
)。如果要更好地控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这很有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 -
use_cache
(bool
,可选)- 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 -
output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。 -
labels
(形状为(batch_size,)
的torch.LongTensor
,可选)- 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
时)包含各种元素,取决于配置(BartConfig)和输入。
-
loss
(形状为(1,)
的torch.FloatTensor
,可选,当提供label
时返回)- 分类(如果config.num_labels==1
则为回归)损失。 -
logits
(形状为(batch_size, config.num_labels)
的torch.FloatTensor
)- 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。
-
decoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入输出的一个+每个层的输出的一个)。每个层的解码器的隐藏状态加上初始嵌入输出。
-
decoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)-模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(torch.FloatTensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)-形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。每层编码器的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(torch.FloatTensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)-形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
BartForSequenceClassification 的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
单标签分类的示例:
>>> import torch
>>> from transformers import AutoTokenizer, BartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("valhalla/bart-large-sst2")
>>> model = BartForSequenceClassification.from_pretrained("valhalla/bart-large-sst2")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'POSITIVE'
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BartForSequenceClassification.from_pretrained("valhalla/bart-large-sst2", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
0.0
多标签分类的示例:
>>> import torch
>>> from transformers import AutoTokenizer, BartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("valhalla/bart-large-sst2")
>>> model = BartForSequenceClassification.from_pretrained("valhalla/bart-large-sst2", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BartForSequenceClassification.from_pretrained(
... "valhalla/bart-large-sst2", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
BartForQuestionAnswering
class transformers.BartForQuestionAnswering
( config )
参数
config
(BartConfig)-模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
BART 模型在抽取式问答任务(如 SQuAD)上具有顶部的跨度分类头(在隐藏状态输出顶部的线性层上计算跨度起始对数
和跨度结束对数
)。
此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
forward
( input_ids: Tensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None start_positions: Optional = None end_positions: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)-词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选)-用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:-
1 表示“未屏蔽”的标记,
-
对于被屏蔽的标记,值为 0。
什么是注意力蒙版?
-
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)- 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是解码器输入 ID?
Bart 使用
eos_token_id
作为decoder_input_ids
生成的起始标记。如果使用past_key_values
,可选择仅输入最后的decoder_input_ids
(参见past_key_values
)。为了翻译和总结训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以便进行去噪预训练,遵循论文中的方法。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的torch.LongTensor
,可选)- 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。因果蒙版也将默认使用。如果要更改填充行为,应阅读
modeling_bart._prepare_decoder_attention_mask
并根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。 -
head_mask
(形状为(encoder_layers, encoder_attention_heads)
的torch.Tensor
,可选)- 用于在编码器中使注意力模块的特定头部失效的蒙版。蒙版值选在[0, 1]
之间:-
1 表示头部未被屏蔽,
-
0 表示头部被屏蔽。
-
-
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)- 用于在解码器中使注意力模块的特定头部失效的蒙版。蒙版值选在[0, 1]
之间:-
1 表示头部未被屏蔽,
-
0 表示头部被屏蔽。
-
-
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)- 用于在解码器中使交叉注意力模块的特定头部失效的蒙版。蒙版值选在[0, 1]
之间:-
1 表示头部未被屏蔽,
-
0 表示头部被屏蔽。
-
-
encoder_outputs
(tuple(tuple(torch.FloatTensor)
,可选)- 元组包括(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。如果使用
past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(即未将其过去的键值状态提供给此模型的那些)的形状为(batch_size, 1)
的张量,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。 -
decoder_inputs_embeds
(torch.FloatTensor
,形状为(batch_size, target_sequence_length, hidden_size)
,可选) — 可选地,您可以选择直接传递嵌入表示,而不是传递decoder_input_ids
。如果使用了past_key_values
,则可以选择仅输入最后的decoder_inputs_embeds
(参见past_key_values
)。如果您想要更多控制如何将decoder_input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。如果
decoder_input_ids
和decoder_inputs_embeds
都未设置,则decoder_inputs_embeds
取inputs_embeds
的值。 -
use_cache
(bool
,可选) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。 -
start_positions
(torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算标记跨度起始位置的位置(索引)标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内,用于计算损失。 -
end_positions
(torch.LongTensor
,形状为(batch_size,)
,可选) — 用于计算标记跨度结束位置的位置(索引)标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内,用于计算损失。
返回
transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
时)包含各种元素,具体取决于配置(BartConfig)和输入。
-
loss
(torch.FloatTensor
,形状为(1,)
,可选,当提供labels
时返回) — 总跨度提取损失是起始和结束位置的交叉熵之和。 -
start_logits
(torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度起始得分(SoftMax 之前)。 -
end_logits
(torch.FloatTensor
,形状为(batch_size, sequence_length)
) — 跨度结束得分(SoftMax 之前)。 -
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(torch.FloatTensor)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。 -
decoder_hidden_states
(tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入层的输出+每层的输出)。解码器每层的隐藏状态加上初始嵌入输出。
-
decoder_attentions
(tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(torch.FloatTensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(torch.FloatTensor)
, 可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
元组(如果模型有嵌入层,则为嵌入层的输出+每层的输出)。编码器每层的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(torch.FloatTensor)
, 可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的torch.FloatTensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
BartForQuestionAnswering 的前向方法覆盖了__call__
特殊方法。
虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行前处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, BartForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("valhalla/bart-large-finetuned-squadv1")
>>> model = BartForQuestionAnswering.from_pretrained("valhalla/bart-large-finetuned-squadv1")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> tokenizer.decode(predict_answer_tokens, skip_special_tokens=True)
' nice puppet'
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
>>> round(loss.item(), 2)
0.59
BartForCausalLM
class transformers.BartForCausalLM
( config )
参数
config
(BartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
BART 解码器,顶部带有语言建模头(线性层,权重与输入嵌入层绑定)。
这个模型继承自 PreTrainedModel。查看超类文档以了解库实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。
这个模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。
前进
( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的torch.LongTensor
)— 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的torch.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:-
1 表示未被“掩盖”的标记,
-
0 表示被“掩盖”的标记。
什么是注意力掩码?
-
-
encoder_hidden_states
(形状为(batch_size, sequence_length, hidden_size)
的torch.FloatTensor
,可选)— 编码器最后一层的输出的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。 -
encoder_attention_mask
(形状为(batch_size, sequence_length)
的torch.FloatTensor
,可选)— 用于避免在编码器输入的填充标记索引上执行注意力。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选在[0, 1]
之间: -
head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)— 用于使注意力模块的选定头部无效的掩码。掩码值选在[0, 1]
之间:-
1 表示头部未被“掩盖”,
-
0 表示头部被“掩盖”。
-
-
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的torch.Tensor
,可选)— 用于使交叉注意力模块的选定头部无效的掩码。掩码值选在[0, 1]
之间:-
1 表示头部未被“掩盖”,
-
0 表示头部被“掩盖”。
-
-
past_key_values
(tuple(tuple(torch.FloatTensor))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(torch.FloatTensor)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。当模型用作序列到序列模型中的解码器时,只有在需要时才需要这两个额外的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。
如果使用
past_key_values
,用户可以选择仅输入最后一个形状为(batch_size, 1)
的decoder_input_ids
(那些没有将它们的过去键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
labels
(torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
或 -100(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(遮蔽),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。 -
use_cache
(bool
, optional) — 如果设置为True
,则返回past_key_values
键值状态,并可用于加速解码(参见past_key_values
)。-
1 代表未被遮蔽的标记,
-
0 代表被遮蔽的标记。
-
-
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
元组(如果传递了 return_dict=False
或当 config.return_dict=False
时)包含根据配置(BartConfig)和输入的不同元素。
-
loss
(torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — 语言建模损失(用于下一个标记预测)。 -
logits
(torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states
(tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
。模型在每一层输出的隐藏状态加上可选的初始嵌入输出。
-
attentions
(tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
。自注意力头中注意力 softmax 后的注意力权重,用于计算加权平均值。
-
cross_attentions
(tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
。自注意力 softmax 后的交叉注意力权重,用于计算交叉注意力头中的加权平均。
-
past_key_values
(tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftorch.FloatTensor
tuples of lengthconfig.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True
。包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。
示例:
>>> from transformers import AutoTokenizer, BartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = BartForCausalLM.from_pretrained("facebook/bart-base", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
TensorFlowHide TensorFlow content
TFBartModel
class transformers.TFBartModel
( config: BartConfig load_weight_prefix = None *inputs **kwargs )
参数
config
(BartConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
裸 BART 模型输出没有特定头部的原始隐藏状态。此模型继承自 TFPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(类似于 PyTorch 模型),或者
-
将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,应该“只需工作” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:
-
只有一个包含
input_ids
的张量,没有其他内容:model(input_ids)
-
一个长度不同的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False **kwargs ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的tf.Tensor
)- 输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)- 避免对填充标记索引执行注意力的掩码。选择的掩码值在[0, 1]
中:-
对于未被“掩码”(masked)的标记,为 1。
-
对于被“掩码”(masked)的标记。
注意力掩码是什么?
-
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)- 解码器输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是解码器输入 ID?
Bart 使用
eos_token_id
作为decoder_input_ids
生成的起始标记。如果使用了past_key_values
,可以选择仅输入最后的decoder_input_ids
(请参阅past_key_values
)。对于翻译和总结训练,应提供
decoder_input_ids
。如果没有提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文中的方法。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)- 将默认生成并忽略填充标记。不建议为大多数用例设置此选项。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)- 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
head_mask
(形状为(encoder_layers, encoder_attention_heads)
的tf.Tensor
,可选)- 用于使编码器中注意力模块中选择的头部失效的掩码。选择的掩码值在[0, 1]
中:-
1 表示头部未被
masked
, -
0 表示头部被
masked
。
-
-
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的tf.Tensor
,可选)- 用于使解码器中注意力模块中选择的头部失效的掩码。选择的掩码值在[0, 1]
中:-
1 表示头部未被
masked
, -
0 表示头部被
masked
。
-
-
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的tf.Tensor
,可选)- 用于使交叉注意力模块中选择的头部失效的掩码。选择的掩码值在[0, 1]
中:-
1 表示头部未被
masked
, -
0 表示头部被
masked
。
-
-
encoder_outputs
(tf.FloatTensor
,可选)- 编码器最后一层的隐藏状态的输出。用于解码器的交叉注意力。形状为(batch_size, sequence_length, hidden_size)
的序列是 -
past_key_values
(长度为config.n_layers
的Tuple[Tuple[tf.Tensor]]
)- 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(那些没有将其过去的键值状态提供给此模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids
。如果您想要更多控制权,以便将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 -
use_cache
(bool
,可选,默认为True
)- 如果设置为True
,将返回past_key_values
键值状态,并可用于加速解码(请参阅past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。 -
output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions
。此参数仅可在急切模式下使用,在图模式中将使用配置中的值。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
,可选)— 是否返回一个 ModelOutput 而不是一个普通的元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
,可选,默认为False
)— 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。
返回
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或 tuple(tf.Tensor)
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或一个tf.Tensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(BartConfig)和输入而异的各种元素。
-
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
)— 模型解码器最后一层的隐藏状态序列的输出。如果使用了
past_key_values
,则只输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码(请参见
past_key_values
输入)。 -
decoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。每层解码器的输出处的解码器的隐藏状态加上初始嵌入输出。
-
decoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)— 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每层的输出)。每层解码器的输出处的编码器的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFBartModel 的前向方法,覆盖了__call__
特殊方法。
尽管前向传递的步骤需要在此函数中定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, TFBartModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> model = TFBartModel.from_pretrained("facebook/bart-large")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
TFBartForConditionalGeneration
class transformers.TFBartForConditionalGeneration
( config load_weight_prefix = None *inputs **kwargs )
参数
config
(BartConfig)— 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。
带有语言建模头的 BART 模型。可用于摘要。此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型也是tf.keras.Model子类。将其用作常规 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(类似于 PyTorch 模型),或
-
将所有输入作为列表、元组或字典放在第一个位置参数中。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于这种支持,当使用model.fit()
等方法时,应该“只需工作” - 只需传递model.fit()
支持的任何格式的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可用于在第一个位置参数中收集所有输入张量:
-
只有一个带有
input_ids
的张量,没有其他内容:model(input_ids)
-
一个长度可变的列表,其中包含按照文档字符串中给定的顺序的一个或多个输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为({0})
的tf.Tensor
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为({0})
的tf.Tensor
,可选)- 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:-
1 表示标记
未被掩盖
, -
0 表示标记
被掩盖
。
什么是注意力掩码?
-
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)- 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是解码器输入 ID?
Bart 使用
eos_token_id
作为decoder_input_ids
生成的起始标记。如果使用past_key_values
,则只需选择最后的decoder_input_ids
进行输入(参见past_key_values
)。对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)- 默认情况下将被创建并忽略填充标记。不建议为大多数用例设置此项。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)- 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
head_mask
(形状为(encoder_layers, encoder_attention_heads)
的tf.Tensor
,可选)- 用于使编码器中的注意力模块中选定的头部失效的掩码。掩码值选择在[0, 1]
中:-
1 表示头部
未被掩盖
, -
0 表示头部被
掩盖
。
-
-
decoder_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的tf.Tensor
,可选)- 用于在解码器中的注意力模块中使选定的头部失效的掩码。掩码值选择在[0, 1]
中:-
1 表示头部
未被掩盖
, -
0 表示头部
被掩盖
。
-
-
cross_attn_head_mask
(形状为(decoder_layers, decoder_attention_heads)
的tf.Tensor
,可选)- 用于使交叉注意力模块中选定的头部失效的掩码。掩码值选择在[0, 1]
中:-
1 表示头部
未被掩盖
, -
0 表示头部
被掩盖
。
-
-
encoder_outputs
(tf.FloatTensor
,可选)- 编码器最后一层的隐藏状态的输出。在解码器的交叉注意力中使用。形状为(batch_size, sequence_length, hidden_size)
的序列 -
past_key_values
(长度为config.n_layers
的Tuple[Tuple[tf.Tensor]]
)- 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values
,用户可以选择仅输入最后的decoder_input_ids
(这些不会将它们的过去键值状态提供给此模型)的形状为(batch_size, 1)
,而不是所有形状为(batch_size, sequence_length)
的decoder_input_ids
。 -
inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, 可选) — 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。 -
use_cache
(bool
, 可选, 默认为True
) — 如果设置为True
,则返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。 -
output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请查看返回张量中的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请查看返回张量中的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
, 可选, 默认为False
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 -
labels
(tf.Tensor
of shape(batch_size, sequence_length)
, 可选) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]
或 -100(参见input_ids
文档字符串)。索引设置为-100
的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]
中的标记。
返回
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或一个 tf.Tensor
元组(如果传递 return_dict=False
或 config.return_dict=False
)包含根据配置(BartConfig)和输入的不同元素。
-
loss
(tf.Tensor
of shape(n,)
, 可选, 当提供labels
时返回,其中 n 是未屏蔽标签的数量) — 语言建模损失。 -
logits
(tf.Tensor
of shape(batch_size, sequence_length, config.vocab_size)
) — 语言建模头部的预测分数(SoftMax 之前每个词汇标记的分数)。 -
past_key_values
(List[tf.Tensor]
, 可选, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
。包含解码器的预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。
-
decoder_hidden_states
(tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。解码器在每个层的输出以及初始嵌入输出的隐藏状态。
-
decoder_attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(tf.Tensor
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(tf.Tensor)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出,一个用于每层的输出)。每层编码器的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(tf.Tensor)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFBartForConditionalGeneration 的前向方法覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在之后调用Module
实例,而不是这个,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
摘要示例:
>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="tf")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
掩码填充示例:
>>> from transformers import AutoTokenizer, TFBartForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = TFBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> input_ids = tokenizer([TXT], return_tensors="tf")["input_ids"]
>>> logits = model(input_ids).logits
>>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token
TFBartForSequenceClassification
class transformers.TFBartForSequenceClassification
( config: BartConfig load_weight_prefix = None *inputs **kwargs )
参数
config
(BartConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。
在顶部添加一个序列分类/头的 Bart 模型(在池化输出的顶部添加一个线性层),例如用于 GLUE 任务。
该模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
该模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有信息。
transformers
中的 TensorFlow 模型和层接受两种格式的输入:
-
将所有输入作为关键字参数(如 PyTorch 模型),或
-
将所有输入作为列表、元组或字典的第一个位置参数。
支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()
等方法时,您应该可以“轻松使用” - 只需以model.fit()
支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional
API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:
-
只有
input_ids
的单个张量,没有其他内容:model(input_ids)
-
一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:
model([input_ids, attention_mask])
或model([input_ids, attention_mask, token_type_ids])
-
一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
请注意,当使用子类化创建模型和层时,您无需担心这些内容,因为您可以像对待其他 Python 函数一样传递输入!
call
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutput or tuple(tf.Tensor)
参数
-
input_ids
(形状为({0})
的tf.Tensor
)— 词汇表中输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为({0})
的tf.Tensor
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]
中选择:-
对于
未屏蔽
的标记, -
对于
被屏蔽
的标记为 0。
什么是注意力掩码?
-
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)— 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是解码器输入 ID?
Bart 使用
eos_token_id
作为decoder_input_ids
生成的起始标记。如果使用past_key_values
,则只需输入最后的decoder_input_ids
(请参阅past_key_values
)。对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文中的方法。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的tf.Tensor
,可选)— 将默认生成并忽略填充标记。不建议在大多数用例中设置此项。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的tf.Tensor
,可选)— 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
head_mask
(形状为(encoder_layers, encoder_attention_heads)
的tf.Tensor
,可选)— 用于将编码器中注意力模块的选定头部置零的掩码。掩码值在[0, 1]
中选择:-
1 表示头部未被遮蔽,
-
0 表示头部被遮蔽。
-
-
decoder_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于使解码器中注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:-
1 表示头部未被遮蔽,
-
0 表示头部被遮蔽。
-
-
cross_attn_head_mask
(tf.Tensor
of shape(decoder_layers, decoder_attention_heads)
, optional) — 用于使交叉注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]
之间:-
1 表示头部未被遮蔽,
-
0 表示头部被遮蔽。
-
-
encoder_outputs
(tf.FloatTensor
, optional) — 编码器最后一层的输出的隐藏状态。用于解码器的交叉注意力。形状为(batch_size, sequence_length, hidden_size)
的序列 -
past_key_values
(Tuple[Tuple[tf.Tensor]]
of lengthconfig.n_layers
) — 包含注意力块的预计算的键和值隐藏状态。可用于加速解码。如果使用了past_key_values
,用户可以选择只输入最后的decoder_input_ids
(那些没有将它们的过去键值状态提供给该模型的)的形状为(batch_size, 1)
,而不是形状为(batch_size, sequence_length)
的所有decoder_input_ids
。 -
inputs_embeds
(tf.Tensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids
。如果您想要更多控制如何将input_ids
索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。 -
use_cache
(bool
, optional, defaults toTrue
) — 如果设置为True
,将返回past_key_values
键值状态,可用于加速解码(参见past_key_values
)。在训练期间设置为False
,在生成期间设置为True
。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。此参数仅在急切模式下使用,在图模式下将使用配置中的值。 -
return_dict
(bool
, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。此参数可以在急切模式下使用,在图模式下该值将始终设置为 True。 -
training
(bool
, optional, defaults toFalse
) — 是否在训练模式下使用模型(一些模块如 dropout 模块在训练和评估之间有不同的行为)。 -
labels
(tf.Tensor
of shape(batch_size, sequence_length)
, optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]
范围内。如果config.num_labels > 1
,则计算分类损失(交叉熵)。
返回
transformers.modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutput 或 tuple(tf.Tensor)
一个 transformers.modeling_tf_outputs.TFSeq2SeqSequenceClassifierOutput 或一个tf.Tensor
元组(如果传递了return_dict=False
或当config.return_dict=False
时)包括根据配置(BartConfig)和输入的各种元素。
-
loss
(形状为(1,)
的tf.Tensor
,可选,当提供label
时返回)— 分类(如果config.num_labels==1
则为回归)损失。 -
logits
(形状为(batch_size, config.num_labels)
的tf.Tensor
)— 分类(如果config.num_labels==1
则为回归)分数(SoftMax 之前)。 -
past_key_values
(List[tf.Tensor]
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tf.Tensor
列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)
)。包含解码器的预计算隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。 -
decoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出,一个用于每层的输出)。每层解码器的隐藏状态加上初始嵌入输出。
-
decoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。 -
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
,可选)— 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(tf.Tensor)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的tf.Tensor
元组(一个用于嵌入的输出,一个用于每层的输出)。每层编码器的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(tf.Tensor)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的tf.Tensor
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
TFBartForSequenceClassification 的前向方法覆盖了__call__
特殊方法。
尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。
JAXHide JAX 内容
FlaxBartModel
class transformers.FlaxBartModel
( config: BartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(BartConfig)— 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)— 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了
dtype
,所有计算将使用给定的数据类型进行。请注意,这仅指定了计算的数据类型,不会影响模型参数的数据类型。
如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
裸 Bart 模型变压器输出原始隐藏状态,没有特定的头部。此模型继承自 FlaxPreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个 Flax Linen flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,此模型支持 JAX 的固有特性,例如:
__call__
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的jnp.ndarray
,可选)— 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:-
1 表示
未被掩盖
的标记, -
0 表示
被掩盖
的标记。
什么是注意力掩码?
-
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是解码器输入 ID?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以用于去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果蒙版也将默认使用。如果您想要更改填充行为,您应该根据您的需求进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(可选,bool
)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions
。 -
output_hidden_states
(可选,bool
)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states
。 -
return_dict
(可选,bool
)— 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或tupel(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一个tupel(torch.FloatTensor)
(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(BartConfig)和输入的各种元素。
-
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
)— 模型解码器最后一层的隐藏状态序列。如果仅使用
past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(可选,tuple(tuple(jnp.ndarray))
,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(jnp.ndarray)
的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见
past_key_values
输入)。 -
decoder_hidden_states
(可选,tuple(jnp.ndarray)
,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出,一个用于每层的输出)。每层解码器的隐藏状态加上初始嵌入输出。
-
decoder_attentions
(可选,tuple(jnp.ndarray)
,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
, optional) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每层的输出)。编码器在每一层的输出的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxBartPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的方法需要在此函数内定义,但应该在之后调用Module
实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxBartModel
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = FlaxBartModel.from_pretrained("facebook/bart-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
encode
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(jnp.ndarray
of shape(batch_size, sequence_length)
, optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
之间:-
对于未被
masked
的标记,值为 1, -
对于被
masked
的标记,值为 0。
什么是注意力掩码?
-
-
position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多细节,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多细节,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或当config.return_dict=False
时)包括根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>
)和输入的不同元素。
-
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
)- 模型最后一层的隐藏状态序列。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组。模型在每一层输出的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组。在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
示例:
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
解码
( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
)- 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。解码器输入 ID 是什么?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以便进行去噪预训练,遵循论文。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) - 元组包括(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力。 -
encoder_attention_mask
(形状为(batch_size, sequence_length)
的jnp.ndarray
,可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
范围内:-
对于
未被掩码
的标记, -
对于
被掩码
的标记为 0。
什么是注意力掩码?
-
-
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)- 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
-
decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个解码器输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]
内。 -
past_key_values
(Dict[str, np.ndarray]
, optional, 由init_cache
返回或传递先前的past_key_values
时返回) — 可用于快速自回归解码的预先计算的隐藏状态字典(注意力块中的键和值)。预先计算的键和值隐藏状态的形状为[batch_size, max_length]。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>
)和输入的不同元素。
-
last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。如果仅使用
past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块中的键和值,以及在交叉注意力块中可选地使用
config.is_encoder_decoder=True
)可用于加速顺序解码(请参见past_key_values
输入)。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。模型在每个层的输出以及初始嵌入输出的隐藏状态。
-
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
示例:
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
FlaxBartForConditionalGeneration
class transformers.FlaxBartForConditionalGeneration
( config: BartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(BartConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的
dtype
执行。请注意,这仅指定计算的 dtype,不会影响模型参数的 dtype。
如果要更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。
具有语言建模头的 BART 模型。可用于摘要。此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 Flax Linen flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,此模型支持 JAX 的固有功能,例如:
__call__
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
of shape(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(jnp.ndarray
of shape(batch_size, sequence_length)
, optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:-
1 表示
未被掩码
的标记, -
0 表示
被掩码
的标记。
什么是注意力掩码?
-
-
decoder_input_ids
(jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。解码器输入 ID 是什么?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以便进行去噪预训练,遵循论文中的方法。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 默认行为:生成一个忽略decoder_input_ids
中填充标记的张量。因果掩码也将默认使用。如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
,可选)— 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
)包含根据配置(BartConfig)和输入的不同元素。
-
logits
(形状为(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见
past_key_values
输入)。 -
decoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每个层的输出)。解码器每一层输出的隐藏状态以及初始嵌入输出。
-
decoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
,可选)— 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每层的输出)。编码器在每一层输出的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxBartPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。
摘要示例:
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"]).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
掩码填充示例:
>>> import jax
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> input_ids = tokenizer([TXT], return_tensors="jax")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs, k=1)
>>> tokenizer.decode(predictions).split()
encode
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 输入序列标记在词汇表中的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的jnp.ndarray
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
中:-
对于未被“掩盖”的标记为 1,
-
对于被“掩盖”的标记为 0。
什么是注意力掩码?
-
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
)包含根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>
)和输入的不同元素。
-
last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列的输出。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每层的输出)。每层模型的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
示例:
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
decode
( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(jnp.ndarray
,形状为(batch_size, target_sequence_length)
) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。解码器输入 ID 是什么?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,用于去噪预训练,遵循论文。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) — 元组包括(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选) 是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力。 -
encoder_attention_mask
(jnp.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中。-
对于未被
masked
的标记,为 1。 -
对于被
masked
的标记,为 0。
注意力掩码是什么?
-
-
decoder_attention_mask
(jnp.ndarray
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
-
decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 位置嵌入中每个解码器输入序列标记的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
past_key_values
(Dict[str, np.ndarray]
,可选,由init_cache
返回或传递先前的past_key_values
时返回)- 预先计算的隐藏状态的字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为[batch_size, max_length]。 -
output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>
)和输入而异的各种元素。
-
logits
(形状为(batch_size, sequence_length, config.vocab_size)
的jnp.ndarray
)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(嵌入输出的一个 + 每层输出的一个)。模型在每一层输出的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。交叉注意力 softmax 之后的注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的jnp.ndarray
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True
时相关。包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(请参见
past_key_values
输入)。
示例:
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
FlaxBartForSequenceClassification
class transformers.FlaxBartForSequenceClassification
( config: BartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(BartConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
, optional, 默认为jax.numpy.float32
) — 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了
dtype
,则所有计算将使用给定的dtype
执行。请注意,这仅指定计算的 dtype,不影响模型参数的 dtype。
如果您希望更改模型参数的 dtype,请参阅 to_fp16()和 to_bf16()。
在顶部具有序列分类/头的 Bart 模型(在汇总输出的顶部有一个线性层),例如用于 GLUE 任务。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库实现的所有模型的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是一个 Flax 亚麻flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,此模型支持 JAX 的固有功能,例如:
__call__
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
of shape(batch_size, sequence_length)
) — 输入序列标记在词汇表中的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(jnp.ndarray
of shape(batch_size, sequence_length)
, optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
之间:-
对于未被
masked
的标记为 1, -
对于被
masked
的标记为 0。
什么是注意力掩码?
-
-
decoder_input_ids
(jnp.ndarray
of shape(batch_size, target_sequence_length)
, optional) — 解码器输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。解码器输入 ID 是什么?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文。 -
decoder_attention_mask
(jnp.ndarray
,形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
-
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
decoder_position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput 或tuple(torch.FloatTensor)
transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含各种元素,具体取决于配置(BartConfig)和输入。
-
logits
(jnp.ndarray
,形状为(batch_size, config.num_labels)
) — 分类(如果config.num_labels==1
则为回归)得分(SoftMax 之前)。 -
past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。 -
decoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。解码器在每一层输出时的隐藏状态加上初始嵌入输出。
-
decoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
,可选) — 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。编码器在每个层的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每个层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxBartPreTrainedModel
的前向方法覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在之后调用Module
实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxBartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = FlaxBartForSequenceClassification.from_pretrained("facebook/bart-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
encode
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(jnp.ndarray
,形状为(batch_size, sequence_length)
) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。输入 ID 是什么?
-
attention_mask
(jnp.ndarray
,形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的蒙版。蒙版值选择在[0, 1]
范围内。-
对于未被蒙版的标记为 1,
-
对于被蒙版的标记为 0。
注意力蒙版是什么?
-
-
position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
output_attentions
(bool
,可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
,可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
,可选) — 是否返回 ModelOutput 而不是普通元组。
返回值
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor
元组(如果传递了return_dict=False
或config.return_dict=False
)包括根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>
)和输入的不同元素。
-
last_hidden_state
(jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列输出。 -
hidden_states
(tuple(jnp.ndarray)
, 可选, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的元组jnp.ndarray
(一个用于嵌入输出,一个用于每一层的输出)。模型在每一层输出的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
, 可选, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的元组jnp.ndarray
(每层一个)。注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。
示例:
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
decode
( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(jnp.ndarray
of shape(batch_size, target_sequence_length)
) — 解码器输入序列标记在词汇表中的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是解码器输入 ID?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,用于去噪预训练,遵循论文。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) — 元组包括(last_hidden_state
, 可选:hidden_states
, 可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
的隐藏状态序列是编码器最后一层的输出。用于解码器的交叉注意力。 -
encoder_attention_mask
(jnp.ndarray
of shape(batch_size, sequence_length)
, 可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
:-
1 表示
未被掩码
的标记, -
0 表示
被掩码
的标记。
什么是注意力掩码?
-
-
decoder_attention_mask
(jnp.ndarray
of shape(batch_size, target_sequence_length)
, 可选) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
-
decoder_position_ids
(numpy.ndarray
of shape(batch_size, sequence_length)
, 可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
past_key_values
(Dict[str, np.ndarray]
,可选,由init_cache
返回或传递先前的past_key_values
时返回)— 预先计算的隐藏状态的字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为[batch_size, max_length]。 -
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
,可选)— 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>
)和输入的不同元素。
-
last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
)— 模型最后一层的隐藏状态序列。如果仅使用
past_key_values
,则输出形状为(batch_size, 1, hidden_size)
的序列的最后一个隐藏状态。 -
past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)— 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,如果config.is_encoder_decoder=True
,还有 2 个形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块中的键和值,以及在交叉注意力块中,如果
config.is_encoder_decoder=True
)可用于加速顺序解码的(请参见past_key_values
输入)。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每个层的输出)。模型在每一层输出的隐藏状态以及初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。自注意力头中的注意力 softmax 之后的注意力权重,用于计算加权平均值。
-
cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
示例:
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
FlaxBartForQuestionAnswering
class transformers.FlaxBartForQuestionAnswering
( config: BartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(BartConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)— 计算的数据类型。可以是jax.numpy.float32
,jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了
dtype
,则所有计算将使用给定的数据类型进行。“请注意,这仅指定了计算的数据类型,不会影响模型参数的数据类型。”
如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
BART 模型在顶部具有用于提取式问答任务(例如 SQuAD)的跨度分类头(在隐藏状态输出顶部的线性层,用于计算跨度起始对数
和跨度结束对数
)。
此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。
此模型还是 Flax 亚麻Linen子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。
最后,此模型支持 JAX 的固有功能,例如:
__call__
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的jnp.ndarray
,可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]
中:-
对于“未被掩码”的标记为 1,
-
对于“被掩码”的标记为 0。
什么是注意力掩码?
-
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)— 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。解码器输入 ID 是什么?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以便进行去噪预训练,遵循论文。 -
decoder_attention_mask
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
,可选)- 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。如果您想要更改填充行为,您应该根据您的需求进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
decoder_position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)- 解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
output_attentions
(bool
,可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
,可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
,可选)- 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包含根据配置(BartConfig)和输入的不同元素。
-
start_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)- 跨度开始得分(SoftMax 之前)。 -
end_logits
(形状为(batch_size, sequence_length)
的jnp.ndarray
)- 跨度结束得分(SoftMax 之前)。 -
past_key_values
(tuple(tuple(jnp.ndarray))
,可选,当传递use_cache=True
或config.use_cache=True
时返回)- 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见
past_key_values
输入)。 -
decoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回)- 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组。解码器在每层输出的隐藏状态加上初始嵌入输出。
-
decoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
-
cross_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
-
encoder_last_hidden_state
(形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
,可选)— 模型编码器最后一层的隐藏状态序列。 -
encoder_hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或当config.output_hidden_states=True
时返回)— 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出 + 一个用于每层的输出)。编码器在每层输出的隐藏状态加上初始嵌入输出。
-
encoder_attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或当config.output_attentions=True
时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。
FlaxBartPreTrainedModel
的前向方法,覆盖了__call__
特殊方法。
虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module
实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxBartForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = FlaxBartForQuestionAnswering.from_pretrained("facebook/bart-base")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
encode
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
参数
-
input_ids
(形状为(batch_size, sequence_length)
的jnp.ndarray
)— 词汇表中输入序列标记的索引。默认情况下将忽略填充。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。什么是输入 ID?
-
attention_mask
(形状为(batch_size, sequence_length)
的jnp.ndarray
,可选)— 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值为[0, 1]
:-
对于被“未掩码”(not masked)的标记,
-
对于被“掩码”(masked)的标记。
什么是注意力掩码?
-
-
position_ids
(形状为(batch_size, sequence_length)
的numpy.ndarray
,可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]
中选择。 -
output_attentions
(bool
,可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions
。 -
output_hidden_states
(bool
,可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states
。 -
return_dict
(bool
,可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>
)和输入的不同元素。
-
last_hidden_state
(jnp.ndarray
的形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层的隐藏状态序列。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入输出,一个用于每一层的输出)。模型在每一层输出的隐藏状态以及初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。
示例:
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
decode
( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(jnp.ndarray
的形状为(batch_size, target_sequence_length)
) — 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。解码器输入 ID 是什么?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移动来创建此张量,以进行去噪预训练,遵循论文。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) — 元组包括(last_hidden_state
,可选:hidden_states
,可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。 -
encoder_attention_mask
(jnp.ndarray
的形状为(batch_size, sequence_length)
,可选) — 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]
范围内:-
对于
未被掩码
的标记为 1, -
对于
被掩码
的标记为 0。
注意力掩码是什么?
-
-
decoder_attention_mask
(jnp.ndarray
的形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。如果要更改填充行为,您应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
-
decoder_position_ids
(numpy.ndarray
,形状为(batch_size, sequence_length)
,optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]
。 -
past_key_values
(Dict[str, np.ndarray]
, optional, 由init_cache
返回或传递先前的past_key_values
时返回 — 可用于快速自回归解码的预先计算的隐藏状态字典(注意力块中的键和值)。预先计算的键和值隐藏状态的形状为[batch_size, max_length]。 -
output_attentions
(bool
, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions
。 -
output_hidden_states
(bool
, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states
。 -
return_dict
(bool
, optional) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor
元组(如果传递return_dict=False
或config.return_dict=False
)包括根据配置(<class 'transformers.models.bart.configuration_bart.BartConfig'>
)和输入的各种元素。
-
last_hidden_state
(jnp.ndarray
,形状为(batch_size, sequence_length, hidden_size)
) — 模型最后一层输出的隐藏状态序列。如果使用
past_key_values
,则仅输出形状为(batch_size, 1, hidden_size)
的序列的最后隐藏状态。 -
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回 — 长度为config.n_layers
的tuple(jnp.ndarray)
元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)
的张量,并且如果config.is_encoder_decoder=True
,还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
的张量。包含预先计算的隐藏状态(自注意力块中的键和值,以及如果
config.is_encoder_decoder=True
,还包括交叉注意力块中的键和值),可用于加速顺序解码(请参阅past_key_values
输入)。 -
hidden_states
(tuple(jnp.ndarray)
, optional, 当传递output_hidden_states=True
或config.output_hidden_states=True
时返回 — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(一个用于嵌入的输出,一个用于每一层的输出)。模型在每一层输出处的隐藏状态以及初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回 — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。
-
cross_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
和config.add_cross_attention=True
或config.output_attentions=True
时返回 — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。
示例:
>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxBartForConditionalGeneration
>>> model = FlaxBartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
FlaxBartForCausalLM
class transformers.FlaxBartForCausalLM
( config: BartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
参数
-
config
(BartConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。 -
dtype
(jax.numpy.dtype
,可选,默认为jax.numpy.float32
)— 计算的数据类型。可以是jax.numpy.float32
、jax.numpy.float16
(在 GPU 上)和jax.numpy.bfloat16
(在 TPU 上)之一。这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了,所有计算将使用给定的
dtype
执行。“请注意,这仅指定了计算的数据类型,不影响模型参数的数据类型。”
如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。
Bart 解码器模型,顶部带有语言建模头(线性层,其权重与输入嵌入绑定),例如用于自回归任务。
这个模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。
这个模型也是一个 Flax Linen flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以了解所有与一般用法和行为相关的事项。
最后,这个模型支持 JAX 的固有特性,比如:
__call__
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None past_key_values: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
参数
-
decoder_input_ids
(形状为(batch_size, target_sequence_length)
的jnp.ndarray
)— 词汇表中解码器输入序列标记的索引。可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.
call
()。解码器输入 ID 是什么?
对于翻译和摘要训练,应提供
decoder_input_ids
。如果未提供decoder_input_ids
,模型将通过将input_ids
向右移位来创建此张量,用于遵循论文的去噪预训练。 -
encoder_outputs
(tuple(tuple(jnp.ndarray)
) — 元组包含 (last_hidden_state
, 可选:hidden_states
, 可选:attentions
)last_hidden_state
的形状为(batch_size, sequence_length, hidden_size)
,是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力。 -
encoder_attention_mask
(jnp.ndarray
的形状为(batch_size, sequence_length)
,可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]
:-
1 代表未被
masked
的标记, -
0 代表被
masked
的标记。
什么是注意力掩码?
-
-
decoder_attention_mask
(jnp.ndarray
的形状为(batch_size, target_sequence_length)
,可选) — 默认行为:生成一个张量,忽略decoder_input_ids
中的填充标记。因果掩码也将默认使用。如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。
-
decoder_position_ids
(numpy.ndarray
的形状为(batch_size, sequence_length)
,可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。选在范围[0, config.max_position_embeddings - 1]
。 -
past_key_values
(Dict[str, np.ndarray]
,可选,由init_cache
返回或传递先前的past_key_values
时返回) — 预先计算的隐藏状态字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 [batch_size, max_length]。 -
output_attentions
(bool
, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions
。 -
output_hidden_states
(bool
, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states
。 -
return_dict
(bool
, 可选) — 是否返回 ModelOutput 而不是普通元组。
返回
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)
一个 transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor
元组(如果传递 return_dict=False
或 config.return_dict=False
时)包含根据配置(BartConfig)和输入而异的各种元素。
-
logits
(jnp.ndarray
的形状为(batch_size, sequence_length, config.vocab_size)
) — 语言建模头的预测分数(SoftMax 前每个词汇标记的分数)。 -
hidden_states
(tuple(jnp.ndarray)
,可选,当传递output_hidden_states=True
或config.output_hidden_states=True
时返回) — 形状为(batch_size, sequence_length, hidden_size)
的jnp.ndarray
元组(嵌入输出的一个 + 每层输出的一个)。模型在每一层的隐藏状态加上初始嵌入输出。
-
attentions
(tuple(jnp.ndarray)
,可选,当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。在自注意力头中用于计算加权平均的注意力 softmax 后的注意力权重。
-
cross_attentions
(tuple(jnp.ndarray)
, optional, 当传递output_attentions=True
或config.output_attentions=True
时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)
的jnp.ndarray
元组(每层一个)。在注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。
-
past_key_values
(tuple(tuple(jnp.ndarray))
, optional, 当传递use_cache=True
或config.use_cache=True
时返回) — 长度为config.n_layers
的jnp.ndarray
元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在config.is_decoder = True
时相关。包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见
past_key_values
输入)。
FlaxBartDecoderPreTrainedModel
的前向方法重写了__call__
特殊方法。
虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module
实例,而不是这个,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。
示例:
>>> from transformers import AutoTokenizer, FlaxBartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/bart-base")
>>> model = FlaxBartForCausalLM.from_pretrained("facebook/bart-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]