Transformers--4-37-中文文档-二十五-

Transformers 4.37 中文文档(二十五)

原文:huggingface.co/docs/transformers

Nezha

原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/nezha

概述

Nezha 模型是由魏俊秋等人在NEZHA: Neural Contextualized Representation for Chinese Language Understanding中提出的。

论文摘要如下:

预训练语言模型在各种自然语言理解(NLU)任务中取得了巨大成功,因为它能够通过在大规模语料库上进行预训练来捕捉文本中的深层上下文信息。在这份技术报告中,我们介绍了我们在中文语料库上预训练语言模型 NEZHA(NEural contextualiZed representation for CHinese lAnguage understanding)的实践,并为中文 NLU 任务进行微调。当前版本的 NEZHA 基于 BERT,并包含一系列经过验证的改进,包括功能相对位置编码作为有效的位置编码方案、整词遮盖策略、混合精度训练和 LAMB 优化器用于训练模型。实验结果表明,NEZHA 在微调几个代表性的中文任务(包括命名实体识别(人民日报 NER)、句子匹配(LCQMC)、中文情感分类(ChnSenti)和自然语言推理(XNLI))时取得了最先进的性能。

该模型由sijunhe贡献。原始代码可在此处找到。

资源

  • 文本分类任务指南

  • 标记分类任务指南

  • 问答任务指南

  • 遮盖语言建模任务指南

  • 多项选择任务指南

NezhaConfig

class transformers.NezhaConfig

<来源>

( vocab_size = 21128 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 512 max_relative_position = 64 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 classifier_dropout = 0.1 pad_token_id = 0 bos_token_id = 2 eos_token_id = 3 use_cache = True **kwargs )

参数

  • vocab_size (int, optional, defaults to 21128) — NEZHA 模型的词汇表大小。定义了可以由传递给 NezhaModel 的inputs_ids表示的不同标记。

  • hidden_size (int, optional, defaults to 768) — 编码器层和池化器层的维度。

  • num_hidden_layers (int, optional, defaults to 12) — Transformer 编码器中的隐藏层数量。

  • num_attention_heads (int, optional, defaults to 12) — Transformer 编码器中每个注意力层的注意力头数。

  • intermediate_size (int, optional, defaults to 3072) — Transformer 编码器中“中间”(即前馈)层的维度。

  • hidden_act (str or function, optional, defaults to “gelu”) — 编码器和池化器中的非线性激活函数(函数或字符串)。

  • hidden_dropout_prob (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。

  • attention_probs_dropout_prob (float, optional, defaults to 0.1) — 注意力概率的 dropout 比率。

  • max_position_embeddings (int, optional, defaults to 512) — 该模型可能会使用的最大序列长度。通常将其设置为较大的值(例如 512、1024 或 2048)。

  • type_vocab_size (int, optional, defaults to 2) — 传递给 NezhaModel 的token_type_ids的词汇表大小。

  • initializer_range (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • layer_norm_epsfloat,可选,默认为 1e-12)—层归一化层使用的 epsilon。

  • classifier_dropoutfloat,可选,默认为 0.1)—附加分类器的丢失比率。

  • is_decoderbool可选,默认为False)—模型是否用作解码器。如果为False,则模型用作编码器。

这是用于存储 NezhaModel 配置的配置类。根据指定的参数实例化 Nezha 模型,定义模型架构。使用默认值实例化配置将产生类似于 Nezha sijunhe/nezha-cn-base架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import NezhaConfig, NezhaModel

>>> # Initializing an Nezha configuration
>>> configuration = NezhaConfig()

>>> # Initializing a model (with random weights) from the Nezha-base style configuration model
>>> model = NezhaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

NezhaModel

class transformers.NezhaModel

<来源>

( config add_pooling_layer = True )

参数

  • config(NezhaConfig)—具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸 Nezha 模型变换器输出原始隐藏状态,没有特定的顶部头。

该模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

该模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

该模型可以作为编码器(仅具有自注意力)或解码器,此时在自注意力层之间添加了一层交叉注意力,遵循Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser 和 Illia Polosukhin 在《Attention is all you need》中描述的架构。

要使模型作为解码器行为,需要使用配置中的is_decoder参数初始化为True。要在 Seq2Seq 模型中使用,模型需要使用is_decoder参数和add_cross_attention设置为True进行初始化;然后期望将encoder_hidden_states作为输入传递给前向传递。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)—词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 之间:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被masked

    • 对于被masked的头部为 0。

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在编码器输入的填充标记索引上执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用。掩码值在 [0, 1] 中选择:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

  • past_key_values (tuple(tuple(torch.FloatTensor)),长度为 config.n_layers,每个元组有 4 个形状为 (batch_size, num_heads, sequence_length - 1, embed_size_per_head) 的张量) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。

    如果使用了past_key_values,用户可以选择仅输入最后一个 decoder_input_ids(即那些没有将它们的过去键值状态提供给此模型的)的形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • use_cache (bool, optional) — 如果设置为 True,将返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。

返回

transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPoolingAndCrossAttentions 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(NezhaConfig)和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor)— 模型最后一层输出的隐藏状态序列。

  • pooler_output(形状为(batch_size, hidden_size)torch.FloatTensor)— 经过进一步处理的序列第一个标记(分类标记)的最后一层隐藏状态(辅助预训练任务所用的层)。例如,对于 BERT 系列模型,这返回经过线性层和 tanh 激活函数处理后的分类标记。线性层权重是从预训练期间的下一个句子预测(分类)目标中训练的。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有一个嵌入层,+ 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后使用,用于计算交叉注意力头中的加权平均值。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True在交叉注意力块中)可用于加速顺序解码的(见past_key_values输入)。

NezhaModel 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

NezhaForPreTraining

class transformers.NezhaForPreTraining

<来源>

( config )

参数

  • config(NezhaConfig)— 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型在预训练期间顶部有两个头部:一个掩码语言建模头部和一个下一个句子预测(分类)头部。

此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。

此模型还是一个 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None next_sentence_label: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.models.nezha.modeling_nezha.NezhaForPreTrainingOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]内:

    • 1 表示未被 masked的标记,

    • 0 表示被 masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。选择的索引在[0, 1]内:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]内:

    • 1 表示头部未被 masked

    • 0 表示头部被masked

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您希望更多地控制如何将input_ids索引转换为相关向量,则这很有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions

  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states

  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

    标签(形状为(batch_size, sequence_length)torch.LongTensor可选):用于计算被 masked 语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(masked),损失仅计算具有标签在[0, ..., config.vocab_size]内的标记。next_sentence_label(形状为(batch_size,)torch.LongTensor可选):用于计算下一个序列预测(分类)损失的标签。输入应为一个序列对(参见input_ids文档字符串)。索引应在[0, 1]内:

    • 0 表示序列 B 是序列 A 的延续,

    • 1 表示序列 B 是一个随机序列。kwargs(Dict[str, any],可选,默认为{}):用于隐藏已被弃用的旧参数。

返回

transformers.models.nezha.modeling_nezha.NezhaForPreTrainingOutputtuple(torch.FloatTensor)

一个transformers.models.nezha.modeling_nezha.NezhaForPreTrainingOutput或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(NezhaConfig)和输入不同元素。

  • loss (optional, 当提供labels时返回,形状为(1,)torch.FloatTensor) — 总损失,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。

  • prediction_logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • seq_relationship_logits (torch.FloatTensor,形状为(batch_size, 2)) — 下一个序列预测(分类)头的预测分数(SoftMax 之前的 True/False 连续性分数)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForPreTraining 的前向方法覆盖了__call__特殊方法。

虽然前向传递的方法需要在这个函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForPreTraining
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForPreTraining.from_pretrained("sijunhe/nezha-cn-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits

NezhaForMaskedLM

class transformers.NezhaForMaskedLM

<来源>

( config )

参数

  • config(NezhaConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

在顶部具有语言建模头的 Nezha 模型。

该模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为(batch_size, sequence_length)optional) — 避免对填充标记索引执行注意力的掩码。掩码值在[0, 1]中选择:

    • 1 表示未被掩码的标记,

    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部未被掩码,

    • 0 表示头部被掩码。

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions

  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states

  • return_dict (booloptional) — 是否返回 ModelOutput 而不是普通元组。

  • labels (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]中(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含根据配置(NezhaConfig)和输入的各种元素。

  • loss (torch.FloatTensor,形状为(1,)optional,当提供labels时返回) — 掩码语言建模(MLM)损失。

  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每一层的输出)。

    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    在自注意力头中使用注意力 softmax 后的注意力权重,用于计算加权平均值。

NezhaForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

NezhaForNextSentencePrediction

class transformers.NezhaForNextSentencePrediction

< source >

( config )

参数

  • config (NezhaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型在顶部有一个下一句预测(分类)头。

此模型继承自 PreTrainedModel。查看超类文档,了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → export const metadata = 'undefined';transformers.modeling_outputs.NextSentencePredictorOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 1 用于未屏蔽的标记,

    • 0 用于屏蔽的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 指示输入的第一部分和第二部分的段标记索引。索引在[0, 1]中选择:

    • 0 对应于句子 A的标记,

    • 1 对应于句子 B的标记。

    什么是标记类型 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部是未屏蔽

    • 0 表示头部是屏蔽

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选) — 可选地,可以直接传递嵌入表示而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions

  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states

  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • labels (torch.LongTensor,形状为 (batch_size,)可选) — 用于计算下一个序列预测(分类)损失的标签。输入应该是一个序列对(参见 input_ids 文档字符串)。索引应该在 [0, 1] 范围内:

    • 0 表示序列 B 是序列 A 的继续,

    • 1 表示序列 B 是一个随机序列。

返回

transformers.modeling_outputs.NextSentencePredictorOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.NextSentencePredictorOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=False 或当 config.return_dict=False 时)包含根据配置(NezhaConfig)和输入的各种元素。

  • loss (torch.FloatTensor,形状为 (1,)可选,当提供 next_sentence_label 时返回) — 下一个序列预测(分类)损失。

  • logits (torch.FloatTensor,形状为 (batch_size, 2)) — 下一个序列预测(分类)头的预测分数(在 SoftMax 之前的 True/False 继续分数)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入输出的一个 + 每个层的输出的一个)。

    模型在每个层的输出的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每个层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForNextSentencePrediction 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForNextSentencePrediction
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForNextSentencePrediction.from_pretrained("sijunhe/nezha-cn-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")

>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1]  # next sentence was random

NezhaForSequenceClassification

class transformers.NezhaForSequenceClassification

< source >

( config )

参数

  • config(NezhaConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型变压器顶部带有序列分类/回归头(池化输出顶部的线性层),例如用于 GLUE 任务。

此模型继承自 PreTrainedModel。查看超类文档以获取库实现的所有模型的通用方法(例如下载或保存,调整输入嵌入大小,修剪头部等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 遮罩,避免在填充标记索引上执行注意力。选择的掩码值在[0, 1]中:

    • 1 表示未被遮罩的标记,

    • 0 表示被遮罩的标记。

    什么是注意力遮罩?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块中选择的头部无效的掩码。选择的掩码值在[0, 1]中:

    • 1 表示头部未被遮罩,

    • 0 表示头部被遮罩。

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

  • labels (torch.LongTensor,形状为(batch_size,)可选) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=False或当config.return_dict=False时)包含各种元素,取决于配置(NezhaConfig)和输入。

  • loss (torch.FloatTensor,形状为(1,)可选,当提供labels时返回) — 分类(如果 config.num_labels==1 则为回归)损失。

  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — SoftMax 之前的分类(如果 config.num_labels==1 则为回归)分数。

  • hidden_states (tuple(torch.FloatTensor), 可选, 当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。

    模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForSequenceClassification 前向方法,覆盖__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个函数,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, NezhaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, NezhaForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForSequenceClassification.from_pretrained("sijunhe/nezha-cn-base", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NezhaForSequenceClassification.from_pretrained(
...     "sijunhe/nezha-cn-base", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

NezhaForMultipleChoice

class transformers.NezhaForMultipleChoice

<来源>

( config )

参数

  • config (NezhaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型,顶部带有一个多选分类头(池化输出顶部的线性层和一个 Softmax),例如用于 RocStories/SWAG 任务。

这个模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 IDs?

  • attention_mask(形状为(batch_size, num_choices, sequence_length)torch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:

    • 1 表示未被masked的标记,

    • 0 表示被masked的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, num_choices, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引选在[0, 1]之间:

    • 0 对应于一个sentence A标记,

    • 1 对应于一个sentence B标记。

    什么是 token type IDs?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值选在[0, 1]之间:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • inputs_embeds(形状为(batch_size, num_choices, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • return_dictbool可选)- 是否返回一个 ModelOutput 而不是一个普通的元组。

  • labels(形状为(batch_size,)torch.LongTensor可选)- 用于计算多项选择分类损失的标签。索引应在[0, ..., num_choices-1]之间,其中num_choices是输入张量的第二维度的大小。(参见上面的input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或者一个torch.FloatTensor的元组(如果传递了return_dict=False或者config.return_dict=False时)包含不同的元素,取决于配置(NezhaConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)- 分类损失。

  • logits(形状为(batch_size, num_choices)torch.FloatTensor)- num_choices是输入张量的第二维度。(参见上面的input_ids)。

    分类得分(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入的输出 + 每层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForMultipleChoice 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForMultipleChoice.from_pretrained("sijunhe/nezha-cn-base")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

NezhaForTokenClassification

class transformers.NezhaForTokenClassification

<来源>

( config )

参数

  • config (NezhaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nezha 模型在顶部带有一个令牌分类头(隐藏状态输出的线性层)例如用于命名实体识别(NER)任务。

该模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor,形状为 (batch_size, sequence_length)可选) — 避免在填充令牌索引上执行注意力的掩码。掩码值选择在 [0, 1] 中:

    • 1 代表未被masked的令牌,

    • 0 代表被masked的令牌。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选) — 段令牌索引,指示输入的第一部分和第二部分。索引选择在 [0, 1] 中:

    • 0 对应于 句子 A 的令牌,

    • 1 对应于 句子 B 的令牌。

    什么是令牌类型 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块中选择的头部失效的掩码。在[0, 1]中选择的掩码值:

    • 1 表示头部未被“掩盖”,

    • 0 表示头部被“掩盖”。

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

  • labels(形状为(batch_size, sequence_length)torch.LongTensor可选)— 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]内。

返回

transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.TokenClassifierOutput 或torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False,则返回)包含各种元素,具体取决于配置(NezhaConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 分类损失。

  • logits(形状为(batch_size, sequence_length, config.num_labels)torch.FloatTensor)— 分类分数(SoftMax 之前)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层的输出,则为嵌入的输出+每层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

NezhaForTokenClassification 前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NezhaForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForTokenClassification.from_pretrained("sijunhe/nezha-cn-base")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

NezhaForQuestionAnswering

class transformers.NezhaForQuestionAnswering

<来源>

( config )

参数

  • config (NezhaConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

Nezha 模型在顶部具有一个跨度分类头,用于提取式问答任务,如 SQuAD(在隐藏状态输出的顶部有线性层,用于计算 span start logitsspan end logits)。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module 子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档,了解所有与一般用法和行为相关的事项。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 用于未被遮蔽的标记,

    • 0 用于被遮蔽的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被遮蔽,

    • 0 表示头部被遮蔽。

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制权,以便将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

  • start_positions (torch.LongTensor of shape (batch_size,), 可选) — 用于计算标记跨度开始位置的位置(索引)标签。位置被夹紧到序列的长度 (sequence_length)。序列外的位置不会被考虑在内计算损失。

  • end_positions (torch.LongTensor of shape (batch_size,), 可选) — 用于计算标记跨度结束位置的位置(索引)标签。位置被夹紧到序列的长度 (sequence_length)。序列外的位置不会被考虑在内计算损失。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或者 tuple(torch.FloatTensor)

transformers.modeling_outputs.QuestionAnsweringModelOutput 或者一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或者 config.return_dict=False)包含各种元素,取决于配置(NezhaConfig)和输入。

  • loss (torch.FloatTensor of shape (1,), 可选,当提供了 labels 时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 跨度开始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — Span-end scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor)可选,当传递了 output_hidden_states=True 或者 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入的输出 + 每一层的输出)。

    模型在每一层输出处的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递了 output_attentions=True 或者 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每一层一个)。

    注意力权重经过注意力 softmax 后,用于计算自注意力头中的加权平均值。

NezhaForQuestionAnswering 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

例如:

>>> from transformers import AutoTokenizer, NezhaForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("sijunhe/nezha-cn-base")
>>> model = NezhaForQuestionAnswering.from_pretrained("sijunhe/nezha-cn-base")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

NLLB

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/nllb

更新的分词器行为

免责声明: 分词器的默认行为已在 2023 年 4 月修复并更改。之前的版本在目标和源分词序列的末尾都添加了 [self.eos_token_id, self.cur_lang_code]。这是错误的,因为 NLLB 论文提到了 (第 48 页,6.1.1. 模型架构):

请注意,我们将源序列前缀与源语言一起使用,而不是像以前的一些作品那样使用目标语言 (Arivazhagan 等人,2019;Johnson 等人,2017)。这主要是因为我们优先考虑在任何一对 200 种语言上优化我们模型的零翻译性能,对监督性能的损失很小。

先前的行为:

>>> from transformers import NllbTokenizer

>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
>>> tokenizer("How was your day?").input_ids
[13374, 1398, 4260, 4039, 248130, 2, 256047]

>>> # 2: '</s>'
>>> # 256047 : 'eng_Latn'

新行为

>>> from transformers import NllbTokenizer

>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
>>> tokenizer("How was your day?").input_ids
[256047, 13374, 1398, 4260, 4039, 248130, 2]

可以通过以下方式启用旧行为:

>>> from transformers import NllbTokenizer

>>> tokenizer = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", legacy_behaviour=True)

更多细节,请查看链接的 PRIssue

概述

NLLB 模型由 Marta R. Costa-jussà、James Cross、Onur Çelebi、Maha Elbayad、Kenneth Heafield、Kevin Heffernan、Elahe Kalbassi、Janice Lam、Daniel Licht、Jean Maillard、Anna Sun、Skyler Wang、Guillaume Wenzek、Al Youngblood、Bapi Akula、Loic Barrault、Gabriel Mejia Gonzalez、Prangthip Hansanti、John Hoffman、Semarley Jarrett、Kaushik Ram Sadagopan、Dirk Rowe、Shannon Spruit、Chau Tran、Pierre Andrews、Necip Fazil Ayan、Shruti Bhosale、Sergey Edunov、Angela Fan、Cynthia Gao、Vedanuj Goswami、Francisco Guzmán、Philipp Koehn、Alexandre Mourachko、Christophe Ropers、Safiyyah Saleem、Holger Schwenk 和 Jeff Wang 在 No Language Left Behind: Scaling Human-Centered Machine Translation 中提出。

该论文的摘要如下:

受到在全球范围内消除语言障碍的目标驱动,机器翻译已经巩固自己作为当今人工智能研究的重点。然而,这些努力已经围绕一小部分语言展开,抛弃了绝大多数主要是低资源语言。要突破 200 种语言障碍并确保安全、高质量的结果,同时考虑伦理因素,需要什么?在《No Language Left Behind》中,我们首先通过与母语者的探索性访谈来定位对低资源语言翻译支持的需求。然后,我们创建了旨在缩小低资源语言和高资源语言之间性能差距的数据集和模型。更具体地说,我们开发了一个基于 Sparsely Gated Mixture of Experts 的条件计算模型,该模型是通过针对低资源语言量身定制的新颖和有效的数据挖掘技术获得的数据进行训练的。我们提出了多种架构和训练改进来对抗在数千个任务上训练时的过拟合。至关重要的是,我们使用人工翻译的基准 Flores-200 评估了超过 40,000 种不同的翻译方向的性能,并结合了一个涵盖 Flores-200 中所有语言的新颖毒性基准来评估翻译的安全性。我们的模型相对于先前的最新技术实现提高了 44% 的 BLEU,为实现通用翻译系统奠定了重要基础。

此实现包含发布的稠密模型。

稀疏模型 NLLB-MoE (Mixture of Expert) 现已推出!更多细节请查看 这里

此模型由 Lysandre 贡献。作者的代码可以在 这里 找到。

使用 NLLB 生成

在生成目标文本时,将forced_bos_token_id设置为目标语言 ID。以下示例展示了如何使用facebook/nllb-200-distilled-600M模型将英语翻译成法语。

请注意,我们使用法语fra_Latn的 BCP-47 代码。在Flores 200 数据集中查看所有 BCP-47 的列表。

>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")

>>> article = "UN Chief says there is no military solution in Syria"
>>> inputs = tokenizer(article, return_tensors="pt")

>>> translated_tokens = model.generate(
...     **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["fra_Latn"], max_length=30
... )
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
Le chef de l'ONU dit qu'il n'y a pas de solution militaire en Syrie

从除英语以外的任何其他语言生成

英语(eng_Latn)被设置为默认的翻译源语言。为了指定您想要从其他语言翻译,您应该在分词器初始化的src_lang关键字参数中指定 BCP-47 代码。

查看以下示例,将罗马尼亚语翻译成德语:

>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained(
...     "facebook/nllb-200-distilled-600M", token=True, src_lang="ron_Latn"
... )
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M", token=True)

>>> article = "Şeful ONU spune că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(article, return_tensors="pt")

>>> translated_tokens = model.generate(
...     **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["deu_Latn"], max_length=30
... )
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
UN-Chef sagt, es gibt keine militärische Lösung in Syrien

资源

  • 翻译任务指南

  • 摘要任务指南

NllbTokenizer

class transformers.NllbTokenizer

<来源>

( vocab_file bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' tokenizer_file = None src_lang = None tgt_lang = None sp_model_kwargs: Optional = None additional_special_tokens = None legacy_behaviour = False **kwargs )

参数

  • vocab_file (str) — 词汇文件的路径。

  • bos_token (str可选,默认为"<s>") — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。

    在使用特殊标记构建序列时,这不是用于序列开始的标记。使用的标记是cls_token

  • eos_token (str可选,默认为"</s>") — 序列结束标记。

    在使用特殊标记构建序列时,这不是用于序列结束的标记。使用的标记是sep_token

  • sep_token (str可选,默认为"</s>") — 分隔符标记,在从多个序列构建序列时使用,例如,用于序列分类的两个序列或用于文本和问题的问题回答。它还用作使用特殊标记构建的序列的最后一个标记。

  • cls_token (str可选,默认为"<s>") — 用于进行序列分类(对整个序列进行分类而不是每个标记进行分类)时使用的分类器标记。在使用特殊标记构建时,它是序列的第一个标记。

  • unk_token (str可选,默认为"<unk>") — 未知标记。词汇表中没有的标记无法转换为 ID,而是设置为此标记。

  • pad_token (str可选,默认为"<pad>") — 用于填充的标记,例如,当批处理不同长度的序列时。

  • mask_token (str可选,默认为"<mask>") — 用于屏蔽值的标记。在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。

  • tokenizer_file (str可选) — 要使用的分词器文件的路径,而不是词汇文件。

  • src_lang (str可选) — 用作翻译源语言的语言。

  • tgt_lang (str可选) — 用作翻译目标语言的语言。

  • sp_model_kwargs (Dict[str, str]) — 传递给模型初始化的额外关键字参数。

构建一个 NLLB 分词器。

改编自 RobertaTokenizer 和 XLNetTokenizer。基于SentencePiece

源语言文档的分词方法是<tokens> <eos> <语言代码>,目标语言文档的分词方法是<语言代码>

` 用于目标语言文档。

示例:

>>> from transformers import NllbTokenizer

>>> tokenizer = NllbTokenizer.from_pretrained(
...     "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")

build_inputs_with_special_tokens

<来源>

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。

  • token_ids_1 (List[int], 可选) — 第二个序列对的 ID 列表。

返回

List[int]

带有适当特殊标记的输入 ID 列表。

通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。NLLB 序列具有以下格式,其中X表示序列:

  • input_ids (用于编码器) X [eos, src_lang_code]

  • decoder_input_ids: (用于解码器) X [eos, tgt_lang_code]

BOS 从不使用。序列对不是预期的用例,但它们将被处理而无需分隔符。

NllbTokenizerFast

class transformers.NllbTokenizerFast

< source >

( vocab_file = None tokenizer_file = None bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' src_lang = None tgt_lang = None additional_special_tokens = None legacy_behaviour = False **kwargs )

参数

  • vocab_file (str) — 词汇表文件的路径。

  • bos_token (str, 可选, 默认为 "<s>") — 在预训练期间使用的序列开始标记。可以用作序列分类器标记。

    在使用特殊标记构建序列时,这不是用于序列开始的标记。使用的标记是cls_token

  • eos_token (str, 可选, 默认为 "</s>") — 序列结束标记。

    在使用特殊标记构建序列时,这不是用于序列结束的标记。使用的标记是sep_token

  • sep_token (str, 可选, 默认为 "</s>") — 分隔符标记,用于从多个序列构建序列时使用,例如用于序列分类的两个序列或用于文本和问题的问题回答。它还用作使用特殊标记构建的序列的最后一个标记。

  • cls_token (str, 可选, 默认为 "<s>") — 在进行序列分类(对整个序列而不是每个标记进行分类)时使用的分类器标记。当使用特殊标记构建序列时,它是序列的第一个标记。

  • unk_token (str, 可选, 默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是被设置为此标记。

  • pad_token (str, 可选, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。

  • mask_token (str, 可选, 默认为 "<mask>") — 用于掩码值的标记。这是在使用掩码语言建模训练此模型时使用的标记。这是模型将尝试预测的标记。

  • tokenizer_file (str, 可选) — 要使用的分词器文件的路径,而不是词汇表文件。

  • src_lang (str, 可选) — 用作翻译源语言的语言。

  • tgt_lang (str, 可选) — 用作翻译目标语言的语言。

构建一个“快速”NLLB 分词器(由 HuggingFace 的tokenizers库支持)。基于BPE

此分词器继承自 PreTrainedTokenizerFast,其中包含大部分主要方法。用户应参考此超类以获取有关这些方法的更多信息。

源语言文档的分词方法是<tokens> <eos> <language code>,目标语言文档的分词方法是<tokens> <eos>

<tokens> <eos> 用于目标语言文档。

示例:

>>> from transformers import NllbTokenizerFast

>>> tokenizer = NllbTokenizerFast.from_pretrained(
...     "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")

build_inputs_with_special_tokens

< source >

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。

  • token_ids_1 (List[int], 可选) — 第二个序列对的 ID 列表。

返回

List[int]

带有适当特殊标记的输入 ID 列表。

通过连接和添加特殊标记从序列或序列对构建用于序列分类任务的模型输入。特殊标记取决于调用 set_lang。

NLLB 序列具有以下格式,其中X表示序列:

  • input_ids(用于编码器)X [eos, src_lang_code]

  • decoder_input_ids:(用于解码器)X [eos, tgt_lang_code]

BOS 从不使用。序列对不是预期的用例,但它们将在没有分隔符的情况下处理。

create_token_type_ids_from_sequences

< source >

( token_ids_0: List token_ids_1: Optional = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0List[int])— ID 列表。

  • token_ids_1List[int]可选)— 序列对的可选第二个 ID 列表。

返回

List[int]

零的列表。

从传递的两个序列创建一个用于序列对分类任务的掩码。nllb 不使用标记类型 id,因此返回一个零的列表。

set_src_lang_special_tokens

< source >

( src_lang )

将特殊标记重置为源语言设置。

  • 在传统模式下:无前缀,后缀=[eos, src_lang_code]。

  • 在默认模式下:前缀=[src_lang_code],后缀=[eos]

set_tgt_lang_special_tokens

< source >

( lang: str )

将特殊标记重置为目标语言设置。

  • 在传统模式下:无前缀,后缀=[eos, tgt_lang_code]。

  • 在默认模式下:前缀=[tgt_lang_code],后缀=[eos]

NLLB-MOE

原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/nllb-moe

概述

NLLB 模型是由 Marta R. Costa-jussà、James Cross、Onur Çelebi、Maha Elbayad、Kenneth Heafield、Kevin Heffernan、Elahe Kalbassi、Janice Lam、Daniel Licht、Jean Maillard、Anna Sun、Skyler Wang、Guillaume Wenzek、Al Youngblood、Bapi Akula、Loic Barrault、Gabriel Mejia Gonzalez、Prangthip Hansanti、John Hoffman、Semarley Jarrett、Kaushik Ram Sadagopan、Dirk Rowe、Shannon Spruit、Chau Tran、Pierre Andrews、Necip Fazil Ayan、Shruti Bhosale、Sergey Edunov、Angela Fan、Cynthia Gao、Vedanuj Goswami、Francisco Guzmán、Philipp Koehn、Alexandre Mourachko、Christophe Ropers、Safiyyah Saleem、Holger Schwenk 和 Jeff Wang 在No Language Left Behind: Scaling Human-Centered Machine Translation中提出的。

该论文的摘要如下:

受到在全球范围内消除语言障碍的目标驱动,机器翻译已经巩固自己作为当今人工智能研究的重点。然而,这些努力已经围绕着一小部分语言展开,抛弃了大多数主要是低资源语言的语言。要突破 200 种语言障碍,同时确保安全、高质量的结果,同时考虑伦理因素,需要什么?在《No Language Left Behind》中,我们通过首先通过与母语者的探索性访谈来将对低资源语言翻译支持的需求进行情境化,然后创建了旨在缩小低资源语言与高资源语言之间性能差距的数据集和模型。更具体地说,我们开发了一个基于 Sparsely Gated Mixture of Experts 的条件计算模型,该模型是通过针对低资源语言量身定制的新颖和有效的数据挖掘技术获得的数据进行训练的。我们提出了多种架构和训练改进措施,以抵消在数千个任务上训练时的过拟合。至关重要的是,我们使用人工翻译的基准 Flores-200 评估了超过 40,000 个不同的翻译方向的性能,并结合了一个涵盖 Flores-200 中所有语言的新型毒性基准来评估翻译的安全性。我们的模型相对于先前的最先进技术实现了 44%的 BLEU 改进,为实现通用翻译系统奠定了重要基础。

该模型由Arthur Zucker贡献。原始代码可以在这里找到。

使用提示

  • M2M100ForConditionalGeneration 是 NLLB 和 NLLB MoE 的基础模型

  • NLLB-MoE 与 NLLB 模型非常相似,但其前馈层基于 SwitchTransformers 的实现。

  • 分词器与 NLLB 模型相同。

与 SwitchTransformers 的实现差异

最大的区别在于令牌路由的方式。NLLB-MoE 使用top-2-gate,这意味着对于每个输入,只选择两个最高预测概率的专家,其余专家将被忽略。在SwitchTransformers中,只计算了前两个最高概率,这意味着令牌被转发的概率较低。此外,如果一个令牌没有路由到任何专家,SwitchTransformers仍然会添加其未修改的隐藏状态(类似于残差连接),而在NLLB的 top-2 路由机制中,它们被屏蔽。

使用 NLLB-MoE 生成

可用的检查点需要约 350GB 的存储空间。如果您的计算机内存不足,请确保使用accelerate

在生成目标文本集时,将forced_bos_token_id设置为目标语言 id。以下示例显示如何使用facebook/nllb-200-distilled-600M模型将英语翻译成法语。

请注意,我们使用法语的 BCP-47 代码fra_Latn。请参阅Flores 200 数据集中所有 BCP-47 的列表

>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-moe-54b")

>>> article = "Previously, Ring's CEO, Jamie Siminoff, remarked the company started when his doorbell wasn't audible from his shop in his garage."
>>> inputs = tokenizer(article, return_tensors="pt")

>>> translated_tokens = model.generate(
...     **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["fra_Latn"], max_length=50
... )
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
"Auparavant, le PDG de Ring, Jamie Siminoff, a fait remarquer que la société avait commencé lorsque sa sonnette n'était pas audible depuis son magasin dans son garage."

从除英语以外的任何其他语言生成

英语(eng_Latn)被设置为默认语言进行翻译。为了指定您希望从其他语言翻译,您应该在分词器初始化的src_lang关键字参数中指定 BCP-47 代码。

请参见下面的示例,将罗马尼亚语翻译成德语:

>>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b", src_lang="ron_Latn")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-moe-54b")

>>> article = "Şeful ONU spune că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(article, return_tensors="pt")

>>> translated_tokens = model.generate(
...     **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["deu_Latn"], max_length=30
... )
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]

资源

  • 翻译任务指南

  • 摘要任务指南

NllbMoeConfig

class transformers.NllbMoeConfig

<来源>

( vocab_size = 128112 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.05 decoder_layerdrop = 0.05 use_cache = True is_encoder_decoder = True activation_function = 'relu' d_model = 1024 dropout = 0.1 attention_dropout = 0.1 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 2 scale_embedding = True router_bias = False router_dtype = 'float32' router_ignore_padding_tokens = False num_experts = 128 expert_capacity = 64 encoder_sparse_step = 4 decoder_sparse_step = 4 router_z_loss_coef = 0.001 router_aux_loss_coef = 0.001 second_expert_policy = 'all' normalize_router_prob_before_dropping = False batch_prioritized_routing = False moe_eval_capacity_token_fraction = 1.0 moe_token_dropout = 0.2 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 output_router_logits = False **kwargs )

参数

  • vocab_size (int, optional, defaults to 50265) — NllbMoe 模型的词汇量。定义了在调用 NllbMoeModel 时可以表示的不同标记数量。

  • d_model (int, optional, defaults to 1024) — 层和池化器层的维度。

  • encoder_layers (int, optional, defaults to 12) — 编码器层数。

  • decoder_layers (int, optional, defaults to 12) — 解码器层数。

  • encoder_attention_heads (int, optional, defaults to 16) — Transformer 编码器中每个注意力层的注意力头数。

  • decoder_attention_heads (int, optional, defaults to 16) — Transformer 解码器中每个注意力层的注意力头数。

  • decoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。

  • encoder_ffn_dim (int, optional, defaults to 4096) — 编码器中“中间”(通常称为前馈)层的维度。

  • activation_function (str or function, optional, defaults to "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""silu""gelu_new"

  • dropout (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的 dropout 概率。

  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的 dropout 比率。

  • activation_dropout (float, optional, defaults to 0.0) — 全连接层内激活的 dropout 比率。

  • classifier_dropout (float, optional, defaults to 0.0) — 分类器的 dropout 比率。

  • max_position_embeddings (int, optional, defaults to 1024) — 该模型可能使用的最大序列长度。通常设置为较大的值以防万一(例如 512、1024 或 2048)。

  • init_std (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • encoder_layerdrop (float, optional, defaults to 0.0) — 编码器的 LayerDrop 概率。有关更多详细信息,请参阅LayerDrop 论文

  • decoder_layerdrop (float, optional, defaults to 0.0) — 解码器的 LayerDrop 概率。有关更多详细信息,请参阅LayerDrop 论文

  • second_expert_policy (str, optional, default to "all") — 用于对每个标记采样到第二专家的概率进行采样的策略。

  • normalize_router_prob_before_dropping (bool, optional, defaults to True) — 是否在应用基于专家容量的掩码之前对路由器概率进行归一化(容量降低)。

  • batch_prioritized_routing (bool, optional, 默认为True) — 是否按照路由器概率对令牌进行排序以进行容量丢弃。这意味着具有最高概率的令牌将在其他可能在序列中更远的令牌之前路由。

  • moe_eval_capacity_token_fraction (float, optional, 默认为 1.0) — 验证期间作为容量的令牌分数,如果设置为负数,则使用与训练相同的值。应在范围内:(0.0, 1.0]。

  • num_experts (int, optional, 默认为 128) — 每个 NllbMoeSparseMlp 层的专家数量。

  • expert_capacity (int, optional, 默认为 64) — 每个专家可以存储的令牌数量。

  • encoder_sparse_step (int, optional, defaults to 4) — 编码器中稀疏层的频率。4 表示每 4 层中会有一层是稀疏的。

  • decoder_sparse_step (int, optional, defaults to 4) — 解码器中稀疏层的频率。4 表示每 4 层中会有一层是稀疏的。

  • router_dtype (str, optional, 默认为"float32") — 用于路由器的dtype。最好保持dtype"float32",如论文中的selective precision讨论中所指定的。

  • router_ignore_padding_tokens (bool, optional, 默认为False) — 在路由时是否忽略填充令牌。如果为False,则填充令牌不会路由到任何专家。

  • router_bias (bool, optional, 默认为False) — 路由器的分类器是否应具有偏差。

  • moe_token_dropout (float, optional, 默认为 0.2) — MoE 专家输出掩码(EOM)的掩码率,通过对专家输出进行 Dropout2d 实现。

  • output_router_logits (bool, optional, 默认为False) — 是否返回路由器 logits。仅在训练时设置为True以获得辅助损失。

  • use_cache (bool, optional, defaults to True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。

这是一个配置类,用于存储 NllbMoeModel 的配置。它用于根据指定的参数实例化一个 NLLB-MoE 模型,定义模型架构。使用默认值实例化配置将产生类似于 NLLB-MoE facebook/nllb-moe-54b 架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import NllbMoeModel, NllbMoeConfig

>>> # Initializing a NllbMoe facebook/nllb-moe-54b style configuration
>>> configuration = NllbMoeConfig()

>>> # Initializing a model from the facebook/nllb-moe-54b style configuration
>>> model = NllbMoeModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

NllbMoeTop2Router

class transformers.NllbMoeTop2Router

<来源>

( config: NllbMoeConfig )

路由器使用令牌选择前两个专家的分配。

此路由器使用与 fairseq 存储库中的 NLLB-MoE 相同的机制。项目按照 router_probs 排序,然后路由到其选择的专家,直到达到专家的 expert_capacity。不能保证每个令牌都由专家处理,也不能保证每个专家至少收到一个令牌。

还返回路由器组合权重,以确保未更新的状态将被掩码。

route_tokens

<来源>

( router_logits: Tensor input_dtype: dtype = torch.float32 padding_mask: Optional = None )

计算每个专家的dispatch_maskdispatch_weights。这些掩码会根据专家的容量进行调整。

forward

<来源>

( hidden_states: Tensor padding_mask: Optional = None ) → export const metadata = 'undefined';top_1_mask (torch.Tensor of shape (batch_size, sequence_length))

参数

  • hidden_states (torch.Tensor) — (batch_size, sequence_length, hidden_dim) 用于计算路由器概率。

返回

top_1_mask (torch.Tensor,形状为(batch_size, sequence_length))

形状为[batch_size, sequence_length]的索引张量,对应于使用路由器的 top1 概率为每个标记选择的专家。router_probabilities (torch.Tensor,形状为(batch_size, sequence_length, nump_experts)):形状为(batch_size, sequence_length, num_experts)的张量,对应于每个标记和专家的概率。用于将标记路由到专家。router_logits (torch.Tensor,形状为(batch_size, sequence_length)):形状为(batch_size, sequence_length, num_experts)的原始路由器 logits 张量。稍后用于计算路由器 z-loss。

隐藏状态被重新整形以简化路由器概率的计算(为每个专家组合权重)。

NllbMoeSparseMLP

class transformers.NllbMoeSparseMLP

< source >

( config: NllbMoeConfig ffn_dim: int expert_class: Module = <class 'transformers.models.nllb_moe.modeling_nllb_moe.NllbMoeDenseActDense'> )

NLLB-MoE 稀疏 MLP 模块的实现。

forward

< source >

( hidden_states: Tensor padding_mask: Optional = False ) → export const metadata = 'undefined';hidden_states (torch.Tensor of shape (batch_size, sequence_length, hidden_dim))

参数

  • hidden_states (torch.Tensor,形状为(batch_size, sequence_length, hidden_dim)) — 隐藏状态

  • padding_mask (torch.Tensor可选,默认为False) — 注意力掩码。可以是因果形式或非因果形式。

返回

hidden_states (torch.Tensor,形状为(batch_size, sequence_length, hidden_dim))

更新后的隐藏状态路由器 logits (torch.Tensor,形状为(batch_size, sequence_length, num_experts)):用于计算损失

前向传递的目标是具有与等效的NllbMoeDenseActDense(mlp)层相同数量的操作。这意味着所有隐藏状态最多应该被处理两次(因为我们使用了一个 top_2 门控机制)。这意味着我们将复杂度保持在 O(batch_size x sequence_length x hidden_dim)而不是 O(num_experts x batch_size x sequence_length x hidden_dim)。

1- 从router获取router_probsrouter_mask的形状为(batch_size X sequence_length, num_expert),对应于router_probs的布尔版本。使用router_mask对输入进行掩码处理。

2- 将隐藏状态分派给其关联的专家。路由器概率用于在更新掩码隐藏状态时加权每个专家的贡献。

NllbMoeModel

class transformers.NllbMoeModel

< source >

( config: NllbMoeConfig )

参数

  • config (NllbMoeConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸 NllbMoe 模型输出原始隐藏状态,没有特定的头部。此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是 PyTorch torch.nn.Module 的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None output_router_logits: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqMoEModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。

返回

transformers.modeling_outputs.Seq2SeqMoEModelOutputtuple(torch.FloatTensor)

一个transformers.modeling_outputs.Seq2SeqMoEModelOutput或一个torch.FloatTensor元组(如果传递return_dict=False或者config.return_dict=False)包含根据配置(NllbMoeConfig)和输入的各种元素。

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)) — 模型解码器最后一层的隐藏状态序列。

    如果仅使用past_key_values,则输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递use_cache=True或者config.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

  • decoder_hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=True或者config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个 + 每一层的输出一个)。

    解码器每一层输出的隐藏状态以及可选的初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)可选,当传递output_attentions=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • decoder_router_logits (tuple(torch.FloatTensor)可选,当传递output_router_logits=True或者config.add_router_probs=True时返回) — 形状为(batch_size, sequence_length, num_experts)torch.FloatTensor元组(每层一个)。

    解码器模型的路由器 logits,用于计算混合专家模型的辅助损失。

  • cross_attentions (tuple(torch.FloatTensor), 可选, 当传递output_attentions=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层的隐藏状态序列。

  • encoder_hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=True或者config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个 + 每一层的输出一个)。

    编码器每一层输出的隐藏状态以及可选的初始嵌入输出。

  • encoder_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • encoder_router_logitstuple(torch.FloatTensor)可选,当传递output_router_logits=Trueconfig.add_router_probs=True时返回)— 形状为(batch_size, sequence_length, num_experts)torch.FloatTensor元组(每层一个)。

    编码器模型的路由器 logits,用于计算辅助损失和稀疏模块的 z_loss。

NllbMoeModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

NllbMoeModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NllbMoeModel

>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
>>> model = SwitchTransformersModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")

>>> input_ids = tokenizer(
...     "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids  # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1

>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for NllbMoeModel
>>> decoder_input_ids = model._shift_right(decoder_input_ids)

>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state

NllbMoeForConditionalGeneration

class transformers.NllbMoeForConditionalGeneration

<来源>

( config: NllbMoeConfig )

参数

  • config(NllbMoeConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

NllbMoe 模型带有一个语言建模头。可用于摘要。该模型继承自 PreTrainedModel。检查超类文档以获取库为其所有模型实现的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。

该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None output_router_logits: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqMoEOutput or tuple(torch.FloatTensor)

参数

  • input_idstorch.LongTensor,形状为(batch_size, sequence_length))— 输入序列标记在词汇表中的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_masktorch.Tensor,形状为(batch_size, sequence_length)可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]之间:

    • 对于未被屏蔽的标记为 1,

    • 对于被屏蔽的标记为 0。

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor 的形状为 (batch_size, target_sequence_length)optional) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是解码器输入标记?

    NllbMoe 使用 eos_token_id 作为 decoder_input_ids 生成的起始标记。如果使用 past_key_values,可选择仅输入最后的 decoder_input_ids(参见 past_key_values)。

  • decoder_attention_mask (torch.LongTensor 的形状为 (batch_size, target_sequence_length)optional) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。因果掩码也将默认使用。

  • head_mask (torch.Tensor 的形状为 (encoder_layers, encoder_attention_heads)optional) — 编码器中注意力模块中选择性头部置零的掩码。掩码值在 [0, 1] 之间:

    • 1 表示头部未被掩码,

    • 0 表示头部被掩码。

  • decoder_head_mask (torch.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 解码器中注意力模块中选择性头部置零的掩码。掩码值在 [0, 1] 之间:

    • 1 表示头部未被掩码,

    • 0 表示头部被掩码。

  • cross_attn_head_mask (torch.Tensor 的形状为 (decoder_layers, decoder_attention_heads)optional) — 解码器中交叉注意力模块中选择性头部置零的掩码。掩码值在 [0, 1] 之间:

    • 1 表示头部未被掩码,

    • 0 表示头部被掩码。

  • encoder_outputs (tuple(tuple(torch.FloatTensor), optional) — 元组包括 (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)optional) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和额外的 2 个形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。

    如果使用 past_key_values,用户可以选择仅输入最后的 decoder_input_ids(即未将其过去键值状态提供给此模型的那些)的形状为 (batch_size, 1),而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • inputs_embeds (torch.FloatTensor 的形状为 (batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示,而不是传递 input_ids。如果您希望更好地控制如何将 input_ids 索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • decoder_inputs_embeds (torch.FloatTensor,形状为(batch_size, target_sequence_length, hidden_size)可选的) — 可选地,可以直接传递嵌入表示,而不是传递decoder_input_ids。如果使用了past_key_values,则只需输入最后的decoder_inputs_embeds(参见past_key_values)。如果要更好地控制如何将decoder_input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

    如果decoder_input_idsdecoder_inputs_embeds都未设置,则decoder_inputs_embedsinputs_embeds的值。

  • use_cache (bool, 可选的) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

  • output_attentions (bool, 可选的) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_states (bool, 可选的) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • output_router_logits (bool, 可选的) — 是否返回所有路由器的对数。它们对于计算路由器损失很有用,在推断期间不应返回。

  • return_dict (bool, 可选的) — 是否返回一个 ModelOutput 而不是一个普通元组。

  • labels (torch.LongTensor,形状为(batch_size, sequence_length)可选的) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]范围内,或者为-100(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩码),损失仅计算具有标签在[0, ..., config.vocab_size]范围内的标记。

返回值

transformers.modeling_outputs.Seq2SeqMoEOutput或者tuple(torch.FloatTensor)

一个transformers.modeling_outputs.Seq2SeqMoEOutput或者一个torch.FloatTensor元组(如果传递return_dict=False或者当config.return_dict=False时)包含各种元素,取决于配置(NllbMoeConfig)和输入。

  • loss (torch.FloatTensor,形状为(1,), 可选的, 当提供labels时返回) — 语言建模损失。

  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选的, 当传递use_cache=True或者当config.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

  • decoder_hidden_states (tuple(torch.FloatTensor), 可选的, 当传递output_hidden_states=True或者当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。

    每个层的解码器的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor), 可选的, 当传递output_attentions=True或者当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个层一个)。

    NllbMoeForConditionalGeneration 的前向方法,覆盖了__call__特殊方法。

  • cross_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)

    encoder_attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)

  • encoder_last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 编码器模型最后一层的隐藏状态序列。

    编码器每一层输出的隐藏状态,以及初始嵌入输出。

  • 编码器模型的路由器 logits,用于计算混合专家模型的辅助损失和 z_loss。

  • 解码器模型的路由器 logits,用于计算混合专家模型的辅助损失。

    解码器的注意力权重,在注意力 softmax 之后使用,用于计算自注意力头中的加权平均值。

  • 编码器的注意力权重,在注意力 softmax 之后使用,用于计算自注意力头中的加权平均值。

    虽然前向传递的步骤需要在这个函数内定义,但应该在之后调用Module实例,而不是这个函数,因为前者会负责运行前后处理步骤,而后者会默默地忽略它们。

  • encoder_router_logits (tuple(torch.FloatTensor), optional, returned when output_router_logits=True is passed or when config.add_router_probs=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, sequence_length, num_experts).

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后使用,用于计算交叉注意力头中的加权平均值。

encoder_hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)

在传递output_router_logits=Trueconfig.add_router_probs=True时返回,encoder_router_logits是一个元组,包含每一层的torch.FloatTensor,形状为(batch_size, sequence_length, num_experts)

decoder_router_logits (tuple(torch.FloatTensor), optional, returned when output_router_logits=True is passed or when config.add_router_probs=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, sequence_length, num_experts)

>>> from transformers import AutoTokenizer, NllbMoeForConditionalGeneration

>>> model = NllbMoeForConditionalGeneration.from_pretrained("facebook/nllb-moe-54b")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b")

>>> text_to_translate = "Life is like a box of chocolates"
>>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")

>>> # translate to French
>>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("eng_Latn"))
>>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))

Nyströmformer

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/nystromformer

概述

Nyströmformer 模型由 Yunyang Xiong、Zhanpeng Zeng、Rudrasis Chakraborty、Mingxing Tan、Glenn Fung、Yin Li 和 Vikas Singh 在Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention中提出。

论文摘要如下:

Transformer 已经成为自然语言处理任务的强大工具。驱动 Transformer 出色性能的关键组件是自注意力机制,它编码了其他标记对每个特定标记的影响或依赖。尽管有益,但自注意力对输入序列长度的二次复杂度限制了其在更长序列上的应用——这是社区正在积极研究的一个主题。为了解决这一限制,我们提出了 Nyströmformer——一个模型,随着序列长度的增加,展现出有利的可扩展性。我们的想法是基于将 Nyström 方法调整为用 O(n)复杂度近似标准自注意力。Nyströmformer 的可扩展性使其能够应用于包含数千个标记的更长序列。我们在 GLUE 基准和 IMDB 评论的多个下游任务上进行评估,使用标准序列长度,发现我们的 Nyströmformer 表现相当,甚至在少数情况下,甚至略优于标准自注意力。在 Long Range Arena(LRA)基准上的更长序列任务中,Nyströmformer 相对于其他高效自注意力方法表现良好。我们的代码可以在此 https URL 找到。

该模型由novice03贡献。原始代码可以在此处找到。

资源

  • 文本分类任务指南

  • 标记分类任务指南

  • 问答任务指南

  • 遮蔽语言建模任务指南

  • 多选任务指南

NystromformerConfig

class transformers.NystromformerConfig

<来源>

( vocab_size = 30000 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu_new' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 510 type_vocab_size = 2 segment_means_seq_len = 64 num_landmarks = 64 conv_kernel_size = 65 inv_coeff_init_option = False initializer_range = 0.02 layer_norm_eps = 1e-05 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )

参数

  • vocab_size (int, 可选,默认为 30000) — Nystromformer 模型的词汇表大小。定义了在调用 NystromformerModel 时可以表示的不同标记数量。

  • hidden_size (int, 可选,默认为 768) — 编码器层和池化层的维度。

  • num_hidden_layers (int, 可选,默认为 12) — Transformer 编码器中的隐藏层数。

  • num_attention_heads (int, 可选,默认为 12) — Transformer 编码器中每个注意力层的注意力头数。

  • intermediate_size (int, 可选,默认为 3072) — Transformer 编码器中“中间”(即前馈)层的维度。

  • hidden_act (strfunction, 可选,默认为"gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""selu""gelu_new"

  • hidden_dropout_prob (float, 可选,默认为 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。

  • attention_probs_dropout_prob (float, 可选,默认为 0.1) — 注意力概率的丢弃比率。

  • max_position_embeddings (int, 可选,默认为 512) — 该模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512、1024 或 2048)。

  • type_vocab_size (int, optional, defaults to 2) — 在调用 NystromformerModel 时传递的token_type_ids的词汇表大小。

  • segment_means_seq_len (int, optional, defaults to 64) — 在段均值中使用的序列长度。

  • num_landmarks (int, optional, defaults to 64) — 在 Nystrom 近似中使用的地标(或 Nystrom)点的数量。

  • conv_kernel_size (int, optional, defaults to 65) — Nystrom 近似中使用的深度卷积的核大小。

  • inv_coeff_init_option (bool, optional, defaults to False) — 是否使用精确系数计算来计算矩阵的 Moore-Penrose 逆的初始值的迭代方法。

  • initializer_range (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • layer_norm_eps (float, optional, defaults to 1e-12) — 层归一化层使用的 epsilon。

这是一个配置类,用于存储 NystromformerModel 的配置。根据指定的参数实例化一个 Nystromformer 模型,定义模型架构。使用默认值实例化配置将产生类似于 Nystromformer uw-madison/nystromformer-512 架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import NystromformerModel, NystromformerConfig

>>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration
>>> configuration = NystromformerConfig()

>>> # Initializing a model from the uw-madison/nystromformer-512 style configuration
>>> model = NystromformerModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

NystromformerModel

class transformers.NystromformerModel

< source >

( config )

参数

  • config (NystromformerConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 Nyströmformer 模型变压器输出原始隐藏状态,没有特定的头部。这个模型是 PyTorch torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列令牌的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 遮盖填充令牌索引上的注意力。选择的掩码值在[0, 1]之间:

    • 对于未被masked的令牌为 1,

    • 对于被masked的令牌为 0。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]内:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)可选) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]内:

    • 1 表示头部是未被掩盖

    • 0 表示头部是被掩盖

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)可选) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,则这很有用。

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • return_dict (bool可选) — 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(NystromformerConfig)和输入的不同元素。

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。

    如果使用past_key_values,则仅输出形状为(batch_size, 1, hidden_size)的序列的最后隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值,以及如果config.is_encoder_decoder=True还有交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。

    每层模型的输出处的隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

NystromformerModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NystromformerModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerModel.from_pretrained("uw-madison/nystromformer-512")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

NystromformerForMaskedLM

class transformers.NystromformerForMaskedLM

<来源>

( config )

参数

  • config(NystromformerConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

带有顶部语言建模头的 Nyströmformer 模型。此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有内容。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MaskedLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 对于“未屏蔽”的标记,

    • 对于“屏蔽”的标记为 0。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask (torch.FloatTensor,形状为(num_heads,)(num_layers, num_heads)optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这很有用。

  • output_attentions (booloptional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • labels (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 用于计算掩码语言建模损失的标签。索引应在[-100, 0, ..., config.vocab_size]内(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩盖),损失仅计算具有标签在[0, ..., config.vocab_size]内的标记。

返回

transformers.modeling_outputs.MaskedLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MaskedLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(NystromformerConfig)和输入的不同元素。

  • loss (torch.FloatTensor,形状为(1,)optional,当提供labels时返回) — 掩码语言建模(MLM)损失。

  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每一层的输出)。

    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每一层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

NystromformerForMaskedLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NystromformerForMaskedLM
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512")

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> # retrieve index of [MASK]
>>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]

>>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)

>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]
>>> # mask labels of non-[MASK] tokens
>>> labels = torch.where(inputs.input_ids == tokenizer.mask_token_id, labels, -100)

>>> outputs = model(**inputs, labels=labels)

NystromformerForSequenceClassification

class transformers.NystromformerForSequenceClassification

<来源>

( config )

参数

  • config(NystromformerConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

Nyströmformer 模型变压器,顶部带有序列分类/回归头(池化输出的线性层),例如 GLUE 任务。

这个模型是 PyTorch 的torch.nn.Module子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)- 避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 段标记索引,指示输入的第一部分和第二部分。索引选择在[0, 1]中:

    • 0 对应于句子 A标记,

    • 1 对应于句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)- 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)- 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部是not masked

    • 0 表示头部是masked

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。

  • labels(形状为(batch_size,)torch.LongTensor可选)- 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.SequenceClassifierOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(NystromformerConfig)和输入的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,在提供labels时返回)- 分类(如果config.num_labels==1则为回归)损失。

  • logits(形状为(batch_size, config.num_labels)torch.FloatTensor)- 分类(如果config.num_labels==1则为回归)得分(在 SoftMax 之前)。

  • hidden_statestuple(torch.FloatTensor)可选,在传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个+每层输出的一个)。

    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,在传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NystromformerForSequenceClassification 的前向方法,覆盖__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是调用此函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, NystromformerForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, NystromformerForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForSequenceClassification.from_pretrained("uw-madison/nystromformer-512", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = NystromformerForSequenceClassification.from_pretrained(
...     "uw-madison/nystromformer-512", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

NystromformerForMultipleChoice

class transformers.NystromformerForMultipleChoice

<来源>

( config )

参数

  • config(NystromformerConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nyströmformer 模型,顶部带有多选分类头(池化输出上的线性层和 softmax),例如用于 RocStories/SWAG 任务。

这个模型是 PyTorch torch.nn.Module的子类。将其用作常规的 PyTorch 模块,并参考 PyTorch 文档以获取与一般用法和行为相关的所有事项。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.MultipleChoiceModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是 input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional) — 用于避免在填充标记索引上执行注意力的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示未被 masked 的标记。

    • 0 表示被 masked 的标记。

    什么是 attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — 段落标记索引,用于指示输入的第一部分和第二部分。索引在 [0, 1] 中选择:

    • 0 对应于 句子 A 标记。

    • 1 对应于 句子 B 标记。

    什么是 token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

    什么是 position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块的选定头部失效的掩码。掩码值在 [0, 1] 中选择:

    • 1 表示头部未被 masked

    • 0 表示头部是 masked

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您想要更多控制如何将 input_ids 索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的 attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的 hidden_states

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

  • labels (torch.LongTensor of shape (batch_size,), optional) — 用于计算多项选择分类损失的标签。索引应在 [0, ..., num_choices-1] 中,其中 num_choices 是输入张量的第二维度的大小。(参见上面的 input_ids

返回

transformers.modeling_outputs.MultipleChoiceModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.MultipleChoiceModelOutput 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时),包含根据配置(NystromformerConfig)和输入的不同元素。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供 labels 时返回) — 分类损失。

  • logits (torch.FloatTensor of shape (batch_size, num_choices)) — num_choices 是输入张量的第二维度。(参见上面的 input_ids)。

    分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    在传递output_attentions=Trueconfig.output_attentions=True时返回,用于计算自注意力头中加权平均值的注意力权重。

NystromformerForMultipleChoice 的前向方法,覆盖了 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NystromformerForMultipleChoice
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForMultipleChoice.from_pretrained("uw-madison/nystromformer-512")

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors="pt", padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k, v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

NystromformerForTokenClassification

class transformers.NystromformerForTokenClassification

< source >

( config )

参数

  • config (NystromformerConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

Nyströmformer 模型,顶部带有一个标记分类头(隐藏状态输出的线性层),例如用于命名实体识别(NER)任务。

此模型是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 了解详情。

    什么是输入 ID?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在 [0, 1] 中:

    • 1 用于 未被掩码 的标记,

    • 0 用于 被掩码 的标记。

    什么是注意力掩码?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 段标记索引,指示输入的第一部分和第二部分。索引选择在 [0, 1] 中:

    • 0 对应于 句子 A 标记,

    • 1 对应于 句子 B 标记。

    什么是标记类型 ID?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

    什么是位置 ID?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) — 用于使自注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]之间:

    • 1 表示头部是not masked的,

    • 0 表示头部是masked的。

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多细节,请查看返回张量中的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多细节,请查看返回张量中的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) — 用于计算标记分类损失的标签。索引应在[0, ..., config.num_labels - 1]

返回

transformers.modeling_outputs.TokenClassifierOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.TokenClassifierOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(NystromformerConfig)和输入的各种元素。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供labels时返回) — 分类损失。

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels)) — 分类分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个 + 每层的输出一个)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NystromformerForTokenClassification 的前向方法覆盖了__call__特殊方法。

虽然前向传递的方法需要在这个函数内定义,但应该在之后调用Module实例而不是这个,因为前者负责运行前处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NystromformerForTokenClassification
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForTokenClassification.from_pretrained("uw-madison/nystromformer-512")

>>> inputs = tokenizer(
...     "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_token_class_ids = logits.argmax(-1)

>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]

>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss

NystromformerForQuestionAnswering

class transformers.NystromformerForQuestionAnswering

<来源>

( config )

参数

  • config(NystromformerConfig)— 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

Nyströmformer 模型,顶部带有一个用于提取式问答任务(如 SQuAD)的跨度分类头(在隐藏状态输出的线性层上计算span start logitsspan end logits)。

此模型是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值在[0, 1]中选择:

    • 1 表示未被掩码的标记,

    • 0 表示被掩码的标记。

    什么是注意力掩码?

  • token_type_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 段标记索引,用于指示输入的第一部分和第二部分。索引在[0, 1]中选择:

    • 0 对应于一个句子 A标记,

    • 1 对应于一个句子 B标记。

    什么是标记类型 ID?

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

    什么是位置 ID?

  • head_mask(形状为(num_heads,)(num_layers, num_heads)torch.FloatTensor可选)— 用于使自注意力模块的选定头部失效的掩码。掩码值在[0, 1]中选择:

    • 1 表示头部未被掩码

    • 0 表示头部被掩码

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回的张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回的张量下的hidden_states

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

  • start_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记范围开始位置的位置(索引)标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内计算损失。

  • end_positions (torch.LongTensor of shape (batch_size,), optional) — 用于计算标记范围结束位置的位置(索引)标签,以计算标记分类损失。位置被夹紧到序列的长度(sequence_length)。序列外的位置不会被考虑在内计算损失。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或 tuple(torch.FloatTensor)

transformers.modeling_outputs.QuestionAnsweringModelOutput 或 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含各种元素,具体取决于配置(NystromformerConfig)和输入。

  • loss (torch.FloatTensor of shape (1,), optional, 当提供 labels 时返回) — 总跨度提取损失是开始和结束位置的交叉熵之和。

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 跨度开始分数(SoftMax 之前)。

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) — 跨度结束分数(SoftMax 之前)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递 output_hidden_states=True 或当 config.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组。

    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递 output_attentions=True 或当 config.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组。

    在注意力 SoftMax 之后的注意力权重,用于计算自注意力头中的加权平均值。

NystromformerForQuestionAnswering 的前向方法,覆盖 __call__ 特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用 Module 实例而不是这个函数,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, NystromformerForQuestionAnswering
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512")
>>> model = NystromformerForQuestionAnswering.from_pretrained("uw-madison/nystromformer-512")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]

>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])

>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss

Open-Llama

原始文本:huggingface.co/docs/transformers/v4.37.2/en/model_doc/open-llama

此模型仅处于维护模式,我们不接受任何更改其代码的新 PR。

如果您在运行此模型时遇到任何问题,请重新安装支持此模型的最后一个版本:v4.31.0。您可以通过运行以下命令来执行:pip install -U transformers==4.31.0

该模型与 Hugging Face Hub 上的OpenLLaMA 模型不同,后者主要使用 LLaMA 架构。

概述

Open-Llama 模型是由社区开发者 s-JoL 在开源 Open-Llama 项目中提出的。

该模型主要基于 LLaMA,具有一些修改,包括来自 Xformers 的内存高效注意力,来自 Bloom 的稳定嵌入和来自 PaLM 的共享输入输出嵌入。该模型经过中英文的预训练,这使其在中文语言任务上表现更好。

该模型由s-JoL贡献。原始代码由s-JoL发布在 GitHub 上,但现已删除。

OpenLlamaConfig

class transformers.OpenLlamaConfig

<来源>

( vocab_size = 100000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = 0 bos_token_id = 1 eos_token_id = 2 tie_word_embeddings = False use_memory_efficient_attention = True hidden_dropout_prob = 0.1 attention_dropout_prob = 0.1 use_stable_embedding = True shared_input_output_embedding = True rope_scaling = None **kwargs )

参数

  • vocab_size (int, optional, 默认为 32000) — Open-Llama 模型的词汇量。定义了在调用 OpenLlamaModel 时可以表示的不同标记数量。

  • hidden_size (int, optional, 默认为 4096) — 隐藏表示的维度。

  • intermediate_size (int, optional, 默认为 11008) — MLP 表示的维度。

  • num_hidden_layers (int, optional, 默认为 32) — Transformer 编码器中的隐藏层数量。

  • num_attention_heads (int, optional, 默认为 32) — Transformer 编码器中每个注意力层的注意力头数。

  • hidden_act (strfunction, optional, 默认为"silu") — 解码器中的非线性激活函数(函数或字符串)。

  • max_position_embeddings (int, optional, 默认为 2048) — 此模型可能会使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512 或 1024 或 2048)。

  • initializer_range (float, optional, 默认为 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • rms_norm_eps (float, optional, 默认为 1e-12) — rms 归一化层使用的 epsilon。

  • use_cache (bool, optional, 默认为True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。仅在config.is_decoder=True时相关。

  • tie_word_embeddings(bool, optional, 默认为False) — 是否绑定权重嵌入

  • rope_scaling (Dict, optional) — 包含 RoPE 嵌入的缩放配置的字典。目前支持两种缩放策略:线性和动态。它们的缩放因子必须是大于 1 的浮点数。预期格式为{"type": 策略名称, "factor": 缩放因子}。在使用此标志时,不要更新max_position_embeddings为预期的新最大值。查看以下主题以获取有关这些缩放策略行为的更多信息:www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/。这是一个实验性功能,可能在未来版本中发生破坏性 API 更改。

    示例 —

这是用于存储 OpenLlamaModel 配置的配置类。根据指定的参数实例化 Open-Llama 模型,定义模型架构。使用默认值实例化配置将产生类似于s-JoL/Open-Llama-V1的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

>>> from transformers import OpenLlamaModel, OpenLlamaConfig

>>> # Initializing a Open-Llama open_llama-7b style configuration
>>> configuration = OpenLlamaConfig()

>>> # Initializing a model from the open_llama-7b style configuration
>>> model = OpenLlamaModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

OpenLlamaModel

class transformers.OpenLlamaModel

<来源>

( config: OpenLlamaConfig )

参数

  • config(OpenLlamaConfig](/docs/transformers/v4.37.2/en/main_classes/model#transformers.PreTrainedModel.from_pretrained)方法以加载模型权重。配置-OpenLlamaConfig

裸的 Open-Llama 模型输出原始隐藏状态,没有特定的头部。此模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

config.num_hidden_layers层组成的 Transformer 解码器。每一层都是一个OpenLlamaDecoderLayer

forward

<来源>

( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)-词汇表中输入序列标记的索引。默认情况下,提供填充将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    输入 ID 是什么?

  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选)-用于避免在填充标记索引上执行注意力的蒙版。蒙版值选在[0, 1]之间:

    • 1 表示“未屏蔽”的标记,

    • 0 表示“屏蔽”的标记。

    注意力蒙版是什么?

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    如果使用past_key_values,则可选择仅输入最后的decoder_input_ids(请参阅past_key_values)。

    如果要更改填充行为,应该阅读modeling_opt._prepare_decoder_attention_mask并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • position_ids (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.n_positions - 1]中选择。

    什么是位置 ID?

  • past_key_values (tuple(tuple(torch.FloatTensor))optional,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。

    如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(这些没有将其过去的键值状态提供给此模型)的形状为(batch_size, 1)的张量,而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,您可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为关联向量,这将很有用,而不是使用模型的内部嵌入查找矩阵。

  • use_cache (bool, optional) — 如果设置为True,将返回past_key_values键值状态,可用于加速解码(请参阅past_key_values)。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

OpenLlamaModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

OpenLlamaForCausalLM

class transformers.OpenLlamaForCausalLM

<来源>

( config )

forward

<来源>

( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选的) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1] 之间:

    • 1 表示标记是 未被掩码

    • 0 表示标记是 被掩码

    什么是注意力掩码?

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    如果使用了 past_key_values,可以选择仅输入最后的 decoder_input_ids(参见 past_key_values)。

    如果要更改填充行为,您应该阅读 modeling_opt._prepare_decoder_attention_mask 并根据需要进行修改。有关默认策略的更多信息,请参阅 论文 中的图表 1。

    • 1 表示头部是 未被掩码

    • 0 表示头部是 被掩码

  • position_ids (torch.LongTensor,形状为 (batch_size, sequence_length)可选的) — 每个输入序列标记在位置嵌入中的位置索引。在范围 [0, config.n_positions - 1] 中选择。

    什么是位置 ID?

  • past_key_values (tuple(tuple(torch.FloatTensor)), 可选的,当传递 use_cache=True 或当 config.use_cache=True 时返回) — 长度为 config.n_layerstuple(torch.FloatTensor) 元组,每个元组有 2 个形状为 (batch_size, num_heads, sequence_length, embed_size_per_head) 的张量和 2 个额外的形状为 (batch_size, num_heads, encoder_sequence_length, embed_size_per_head) 的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。

    如果使用了 past_key_values,用户可以选择仅输入最后的 decoder_input_ids(那些没有将其过去键值状态提供给此模型的)形状为 (batch_size, 1) 的张量,而不是形状为 (batch_size, sequence_length) 的所有 decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为 (batch_size, sequence_length, hidden_size)可选的) — 可选地,您可以选择直接传递嵌入表示,而不是传递 input_ids。如果您希望更多地控制如何将 input_ids 索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • use_cache (bool可选的) — 如果设置为 True,将返回 past_key_values 键值状态,并可用于加速解码(参见 past_key_values)。

  • output_attentions (bool可选的) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的 attentions

  • output_hidden_states (bool可选的) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states

  • return_dict (bool可选的) — 是否返回 ModelOutput 而不是普通元组。

    参数 — labels (torch.LongTensor,形状为 (batch_size, sequence_length)可选的): 用于计算掩码语言建模损失的标签。索引应该在 [0, ..., config.vocab_size] 或 -100(参见 input_ids 文档字符串)。索引设置为 -100 的标记将被忽略(掩码),损失仅计算具有标签在 [0, ..., config.vocab_size] 中的标记。

返回

transformers.modeling_outputs.CausalLMOutputWithPast 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(OpenLlamaConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)- 语言建模损失(用于下一个标记的预测)。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)- 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值),可用于加速顺序解码(查看past_key_values输入)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出+每层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

OpenLlamaForCausalLM 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, OpenLlamaForCausalLM

>>> model = OpenLlamaForCausalLM.from_pretrained("openlm-research/open_llama_7b")
>>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."

OpenLlamaForSequenceClassification

class transformers.OpenLlamaForSequenceClassification

<来源>

( config )

参数

  • config(OpenLlamaConfig)- 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

LLaMa 模型变压器,顶部带有序列分类头(线性层)。

OpenLlamaForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-2)一样。

由于它对最后一个标记进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了pad_token_id,则找到每行中不是填充标记的最后一个标记。如果未定义pad_token_id,则简单地取批次的每行中的最后一个值。由于在传递inputs_embeds而不是input_ids时无法猜测填充标记,因此执行相同操作(取批次的每行中的最后一个值)。

此模型继承自 PreTrainedModel。查看超类文档,了解库为其所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: LongTensor = None attention_mask: Optional = None position_ids: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 词汇表中输入序列标记的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选)— 用于避免在填充标记索引上执行注意力的蒙版。蒙版值选择在[0, 1]之间:

    • 1 表示“未屏蔽”的标记,

    • 0 表示“屏蔽”的标记。

    什么是注意力蒙版?

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    如果使用了past_key_values,则只需选择最后的decoder_input_ids进行输入(参见past_key_values)。

    如果要更改填充行为,应阅读modeling_opt._prepare_decoder_attention_mask并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。

    • 1 表示头部“未屏蔽”,

    • 0 表示头部“屏蔽”。

  • position_ids(形状为(batch_size, sequence_length)torch.LongTensor可选)— 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.n_positions - 1]

    什么是位置 ID?

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values输入)。

    如果使用past_key_values,用户可以选择仅输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵。

  • use_cache (bool, optional) — 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput 而不是一个普通的元组。

  • labels (torch.LongTensor,形状为(batch_size,)optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

OpenLlamaForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在这个函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

OPT

原文链接:huggingface.co/docs/transformers/v4.37.2/en/model_doc/opt

概述

OPT 模型是由 Meta AI 在Open Pre-trained Transformer Language Models中提出的。OPT 是一系列开源的大型因果语言模型,性能与 GPT3 相似。

该论文的摘要如下:

大型语言模型通常经过数十万计算天的训练,展现出了零次和少次学习的显著能力。考虑到它们的计算成本,这些模型很难在没有重大资本的情况下复制。对于那些通过 API 可用的模型,没有提供完整模型权重的访问权限,这使得它们难以研究。我们提出了 Open Pre-trained Transformers (OPT),这是一套仅包含解码器的预训练 transformers,参数范围从 125M 到 175B,我们希望与感兴趣的研究人员充分和负责任地分享。我们展示了 OPT-175B 与 GPT-3 相当,但只需要 1/7 的碳足迹来开发。我们还发布了详细记录我们面临的基础设施挑战的日志,以及用于尝试所有发布模型的代码。

该模型由Arthur ZuckerYounes BelkadaPatrick Von Platen贡献。原始代码可以在这里找到。

提示:

  • OPT 具有与BartDecoder相同的架构。

  • 与 GPT2 相反,OPT 在每个提示的开头添加了 EOS 标记</s>

资源

一个官方的 Hugging Face 和社区(由🌎表示)资源列表,可帮助您开始使用 OPT。如果您有兴趣提交资源以包含在此处,请随时提出拉取请求,我们将进行审查。资源应该理想地展示一些新内容,而不是重复现有资源。

文本生成

文本分类

  • 文本分类任务指南

  • OPTForSequenceClassification 可以通过这个示例脚本笔记本来支持。

问答

⚡️ 推理

  • 关于如何通过 PyTorch 实现🤗加速运行非常大模型的博客文章。

结合 OPT 和 Flash Attention 2

首先确保安装最新版本的 Flash Attention 2,以包括滑动窗口注意力特性。

pip install -U flash-attn --no-build-isolation

还要确保您有与 Flash-Attention 2 兼容的硬件。在 flash-attn 存储库的官方文档中了解更多信息。还要确保以半精度加载模型(例如`torch.float16“)。

要加载和运行使用 Flash Attention 2 的模型,请参考下面的代码片段:

>>> import torch
>>> from transformers import OPTForCausalLM, GPT2Tokenizer
>>> device = "cuda" # the device to load the model onto

>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> tokenizer = GPT2Tokenizer.from_pretrained("facebook/opt-350m")

>>> prompt = ("A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the "
              "Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived "
              "there?")

>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model.to(device)

>>> generated_ids = model.generate(**model_inputs, max_new_tokens=30, do_sample=False)
>>> tokenizer.batch_decode(generated_ids)[0]
'</s>A chat between a curious human and the Statue of Liberty.\n\nHuman: What is your name?\nStatue: I am the Statue of Liberty.\nHuman: Where do you live?\nStatue: New York City.\nHuman: How long have you lived there?\nStatue: I have lived here for about a year.\nHuman: What is your favorite place to eat?\nStatue: I love'

预期的加速

下面是一个预期的加速图,比较了在 transformers 中使用facebook/opt-2.7b检查点和 Flash Attention 2 模型的纯推理时间之间的差异,使用了两种不同的序列长度。

下面是一个预期的加速图,比较了在 transformers 中使用facebook/opt-350m检查点和 Flash Attention 2 模型的纯推理时间之间的差异,使用了两种不同的序列长度。

OPTConfig

class transformers.OPTConfig

< source >

( vocab_size = 50272 hidden_size = 768 num_hidden_layers = 12 ffn_dim = 3072 max_position_embeddings = 2048 do_layer_norm_before = True _remove_final_layer_norm = False word_embed_proj_dim = None dropout = 0.1 attention_dropout = 0.0 num_attention_heads = 12 activation_function = 'relu' layerdrop = 0.0 init_std = 0.02 use_cache = True pad_token_id = 1 bos_token_id = 2 eos_token_id = 2 enable_bias = True layer_norm_elementwise_affine = True **kwargs )

参数

  • vocab_size (int, optional, defaults to 50272) — OPT 模型的词汇量。定义了在调用 OPTModel 时可以表示的不同标记数量。

  • hidden_size (int, optional, defaults to 768) — 层和池化器层的维度。

  • num_hidden_layers (int, optional, defaults to 12) — 解码器层数。

  • ffn_dim (int, optional, defaults to 3072) — 解码器中“中间”(通常称为前馈)层的维度。

  • num_attention_heads (int, optional, defaults to 12) — Transformer 解码器中每个注意力层的注意力头数。

  • activation_function (strfunction, optional, defaults to "relu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""silu""gelu_new"

  • max_position_embeddings (int, optional, defaults to 2048) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512、1024 或 2048)。

  • do_layer_norm_before (bool, optional, defaults to True) — 在注意力块之前是否执行层归一化。

  • word_embed_proj_dim (int, optional) — word_embed_proj_dim 可以设置为下投影词嵌入,例如opt-350m。默认为hidden_size

  • dropout (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。

  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的 dropout 比率。

  • layerdrop (float, optional, defaults to 0.0) — LayerDrop 概率。查看 LayerDrop paper)获取更多详细信息。

  • init_std (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • use_cache (bool, optional, defaults to True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)。

  • enable_bias (bool, optional, defaults to True) — 注意力块中的线性层是否应该使用偏置项。

  • layer_norm_elementwise_affine (bool, optional, defaults to True) — 层归一化是否应具有可学习参数。

这是用于存储 OPTModel 配置的配置类。它用于根据指定的参数实例化 OPT 模型,定义模型架构。使用默认值实例化配置将产生类似于 OPT facebook/opt-350m 架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import OPTConfig, OPTModel

>>> # Initializing a OPT facebook/opt-large style configuration
>>> configuration = OPTConfig()

>>> # Initializing a model (with random weights) from the facebook/opt-large style configuration
>>> model = OPTModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

PytorchHide Pytorch content

OPTModel

class transformers.OPTModel

< source >

( config: OPTConfig )

参数

  • config (OPTConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 OPT 模型输出原始的隐藏状态,没有特定的头部。该模型继承自 PreTrainedModel。查看超类文档以了解库实现的所有模型的通用方法(例如下载或保存,调整输入嵌入大小,修剪头等)。

该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: LongTensor = None attention_mask: Optional = None head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.BaseModelOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()获取详细信息。

    什么是输入 ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — 避免对填充标记索引执行注意力的掩码。掩码值选在[0, 1]之间:

    • 1 表示未被掩盖的标记,

    • 0 表示被掩盖的标记。

    什么是注意力掩码?

    索引可以使用 AutoTokenizer 获得。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()

    如果使用past_key_values,可以选择仅输入最后的decoder_input_ids(请参阅past_key_values)。

    如果要更改填充行为,应阅读modeling_opt._prepare_decoder_attention_mask并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。

  • head_mask(形状为(encoder_layers, encoder_attention_heads)torch.Tensor可选)- 用于使编码器中注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]中:

    • 1 表示头部未被掩盖,

    • 0 表示头部被掩盖。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参阅past_key_values输入)。

    如果使用past_key_values,用户可以选择仅输入最后一个形状为(batch_size, 1)decoder_input_ids(那些没有将其过去键值状态提供给此模型的)而不是所有形状为(batch_size, sequence_length)decoder_input_ids

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,您可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • use_cachebool可选)- 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(请参阅past_key_values)。

  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions

  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states

  • return_dictbool可选)- 是否返回[ModelOutput]而不是普通元组。

返回

[transformers.modeling_outputs.BaseModelOutputWithPast]或tuple(torch.FloatTensor)

一个[transformers.modeling_outputs.BaseModelOutputWithPast]或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包括根据配置([OPTConfig])和输入不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor)- 模型最后一层的隐藏状态序列。

    如果使用past_key_values,则仅输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=True或当config.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True,还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值以及在交叉注意力块中,如果config.is_encoder_decoder=True,还可以使用的)可用于加速顺序解码的(请参见past_key_values输入)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(用于嵌入的输出,如果模型有嵌入层,则为一个 + 每个层的输出)。

    每个层的模型输出的隐藏状态以及可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每个层一个)。

    在自注意力头中用于计算加权平均值的注意力权重在注意力 softmax 之后。

OPTModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, OPTModel
>>> import torch

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> model = OPTModel.from_pretrained("facebook/opt-350m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

OPTForCausalLM

class transformers.OPTForCausalLM

<来源>

( config )

forward

<来源>

( input_ids: LongTensor = None attention_mask: Optional = None head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)— 输入序列标记在词汇表中的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选)— 用于避免在填充令牌索引上执行注意力的掩码。掩码值选定在[0, 1]之间:

    • 对于未被屏蔽的标记为 1,

    • 对于被屏蔽的标记为 0。

    什么是注意力掩码?

  • head_mask(形状为(num_hidden_layers, num_attention_heads)torch.Tensor可选)— 用于使注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被屏蔽,

    • 0 表示头部被屏蔽。

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回 — 长度为config.n_layers的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。当模型用作序列到序列模型中的解码器时,这两个额外的张量是必需的。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

    如果使用past_key_values,用户可以选择仅输入形状为(batch_size, 1)的最后一个decoder_input_ids(这些没有给出其过去键值状态的模型)而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • labels (torch.LongTensor,形状为(batch_size, sequence_length)optional) — 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]或-100 之间(参见input_ids文档字符串)。将索引设置为-100的标记将被忽略(掩码),损失仅计算具有[0, ..., config.vocab_size]标签的标记。

  • use_cache (booloptional) — 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。

  • output_attentions (booloptional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions

  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states

  • return_dict (booloptional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.CausalLMOutputWithPast 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithPast 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(OPTConfig)和输入的各种元素。

  • loss (torch.FloatTensor,形状为(1,)optional,当提供labels时返回) — 语言建模损失(用于下一个标记的预测)。

  • logits (torch.FloatTensor,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回 — 长度为config.n_layers的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

  • hidden_states (tuple(torch.FloatTensor)可选,当传递 output_hidden_states=True 或者 config.output_hidden_states=True 时返回)— 形状为 (batch_size, sequence_length, hidden_size)torch.FloatTensor 元组(如果模型有嵌入层,则为嵌入的输出 + 每层的输出)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor)可选,当传递 output_attentions=True 或者 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor 元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, OPTForCausalLM

>>> model = OPTForCausalLM.from_pretrained("facebook/opt-350m")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")

>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."

OPTForSequenceClassification

transformers.OPTForSequenceClassification

< source >

( config: OPTConfig )

参数

  • config (OPTConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained() 方法来加载模型权重。

带有顶部序列分类头(线性层)的 OPT 模型变压器。

OPTForSequenceClassification 使用最后一个标记进行分类,就像其他因果模型(例如 GPT-2)一样。

由于它在最后一个标记上进行分类,因此需要知道最后一个标记的位置。如果在配置中定义了 pad_token_id,则会找到每行中不是填充标记的最后一个标记。如果未定义 pad_token_id,则会简单地取批次中每行的最后一个值。由于在传递 inputs_embeds 而不是 input_ids 时无法猜测填充标记,因此会执行相同操作(取批次中每行的最后一个值)。

此模型继承自 PreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module 的子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.SequenceClassifierOutputWithPast or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call() 获取详细信息。

    什么是输入 ID?

  • attention_mask (torch.Tensor,形状为 (batch_size, sequence_length)可选) — 避免在填充标记索引上执行注意力的掩码。选择在 [0, 1] 中的掩码值:

    • 1 代表未被掩码的标记,

    • 0 代表被掩码的标记。

    什么是注意力掩码?

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    如果使用past_key_values,可以选择只输入最后的decoder_input_ids(参见past_key_values)。

    如果要更改填充行为,应阅读modeling_opt._prepare_decoder_attention_mask并根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。

  • head_mask (torch.Tensor,形状为(encoder_layers, encoder_attention_heads)optional) — 用于使编码器中注意力模块中的选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被masked

    • 0 表示头部被masked

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layers的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

    如果使用past_key_values,用户可以选择只输入形状为(batch_size, 1)的最后一个decoder_input_ids(那些没有将其过去的键值状态提供给此模型的)而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 可选地,可以直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,这将非常有用,而不是使用模型的内部嵌入查找矩阵。

  • use_cache (booloptional) — 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。

  • output_attentions (booloptional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_states (booloptional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dict (booloptional) — 是否返回一个 ModelOutput 而不是一个普通元组。

  • labels (torch.LongTensor,形状为(batch_size,)optional) — 用于计算序列分类/回归损失的标签。索引应在[0, ..., config.num_labels - 1]范围内。如果config.num_labels == 1,则计算回归损失(均方损失),如果config.num_labels > 1,则计算分类损失(交叉熵)。

返回

transformers.modeling_outputs.SequenceClassifierOutputWithPasttuple(torch.FloatTensor)

一个transformers.modeling_outputs.SequenceClassifierOutputWithPast或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(OPTConfig)和输入。

  • loss (torch.FloatTensor,形状为(1,)optional,当提供labels时返回) — 分类(如果config.num_labels==1则为回归)损失。

  • logits (torch.FloatTensor,形状为(batch_size, config.num_labels)) — 分类(如果config.num_labels==1则为回归)得分(SoftMax 之前)。

  • past_key_values (tuple(tuple(torch.FloatTensor)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值),可用于加速顺序解码(查看past_key_values输入)。

  • hidden_states (tuple(torch.FloatTensor), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个+每层输出的一个)。

    模型在每一层输出的隐藏状态以及可选的初始嵌入输出。

  • attentions (tuple(torch.FloatTensor), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

OPTForSequenceClassification 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

单标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, OPTForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("ArthurZ/opt-350m-dummy-sc")
>>> model = OPTForSequenceClassification.from_pretrained("ArthurZ/opt-350m-dummy-sc")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_id = logits.argmax().item()
>>> model.config.id2label[predicted_class_id]
'LABEL_0'

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = OPTForSequenceClassification.from_pretrained("ArthurZ/opt-350m-dummy-sc", num_labels=num_labels)

>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
>>> round(loss.item(), 2)
1.71

多标签分类示例:

>>> import torch
>>> from transformers import AutoTokenizer, OPTForSequenceClassification

>>> tokenizer = AutoTokenizer.from_pretrained("ArthurZ/opt-350m-dummy-sc")
>>> model = OPTForSequenceClassification.from_pretrained("ArthurZ/opt-350m-dummy-sc", problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")

>>> with torch.no_grad():
...     logits = model(**inputs).logits

>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]

>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = OPTForSequenceClassification.from_pretrained(
...     "ArthurZ/opt-350m-dummy-sc", num_labels=num_labels, problem_type="multi_label_classification"
... )

>>> labels = torch.sum(
...     torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss

OPTForQuestionAnswering

class transformers.OPTForQuestionAnswering

< source >

( config: OPTConfig )

参数

  • config (OPTConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

带有用于提取问答任务(如 SQuAD)的跨度分类头的 OPT 模型变压器(在隐藏状态输出顶部的线性层,用于计算span start logitsspan end logits)。

此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None start_positions: Optional = None end_positions: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 1 表示未被遮罩的标记,

    • 0 表示被遮罩的标记。

    什么是注意力掩码?

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    如果使用past_key_values,可选择仅输入最后的decoder_input_ids(参见past_key_values)。

    如果您想更改填充行为,您应该阅读modeling_opt._prepare_decoder_attention_mask并根据您的需求进行修改。有关默认策略的更多信息,请参见论文中的图表 1。

  • head_mask(形状为(encoder_layers, encoder_attention_heads)torch.Tensor可选)— 用于使编码器中注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]中:

    • 1 表示头部未被遮罩,

    • 0 表示头部被遮罩。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

    如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(这些没有将其过去的键值状态提供给此模型)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵。

  • use_cachebool可选)— 如果设置为True,将返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

  • start_positions(形状为(batch_size,)torch.LongTensor可选) — 用于计算标记跨度的起始位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不计入损失计算。

  • end_positions(形状为(batch_size,)torch.LongTensor可选) — 用于计算标记跨度的结束位置(索引)的标签。位置被夹紧到序列的长度(sequence_length)。序列外的位置不计入损失计算。

返回

transformers.modeling_outputs.QuestionAnsweringModelOutput 或tuple(torch.FloatTensor)

transformers.modeling_outputs.QuestionAnsweringModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(OPTConfig)和输入。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回) — 总跨度提取损失是起始位置和结束位置的交叉熵之和。

  • start_logits(形状为(batch_size, sequence_length)torch.FloatTensor) — 跨度起始分数(SoftMax 之前)。

  • end_logits(形状为(batch_size, sequence_length)torch.FloatTensor) — 跨度结束分数(SoftMax 之前)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入输出的一个 + 每层的输出一个)。

    模型在每一层输出的隐藏状态加上可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

OPTForQuestionAnswering 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者则默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, OPTForQuestionAnswering
>>> import torch

>>> torch.manual_seed(4)
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

>>> # note: we are loading a OPTForQuestionAnswering from the hub here,
>>> # so the head will be randomly initialized, hence the predictions will be random
>>> model = OPTForQuestionAnswering.from_pretrained("facebook/opt-350m")

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"

>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()

>>> answer_offset = len(tokenizer(question)[0])

>>> predict_answer_tokens = inputs.input_ids[
...     0, answer_offset + answer_start_index : answer_offset + answer_end_index + 1
... ]
>>> predicted = tokenizer.decode(predict_answer_tokens)
>>> predicted
' a nice puppet'

TensorFlow 隐藏 TensorFlow 内容

TFOPTModel

class transformers.TFOPTModel

< source >

( config: OPTConfig **kwargs )

参数

  • config(OPTConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型相关的权重,只加载配置。查看 from_pretrained() 方法以加载模型权重。

输出原始隐藏状态而没有特定头部的裸 TF OPT 模型。此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

TensorFlow 模型和transformers中的层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是,当将输入传递给模型和层时,Keras 方法更喜欢这种格式。由于有这种支持,当使用诸如model.fit()之类的方法时,对您来说应该“只需工作” - 只需以model.fit()支持的任何格式传递您的输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量在第一个位置参数中:

  • 一个仅包含input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False **kwargs ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFBaseModelOutputWithPast or tuple(tf.Tensor)

参数

  • input_ids(形状为({0})tf.Tensor) - 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    输入 ID 是什么?

  • attention_mask(形状为({0})tf.Tensor可选) - 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 1 表示未被“掩盖”的标记,

    • 0 表示被“掩盖”的标记。

    注意力掩码是什么?

  • head_mask(形状为(encoder_layers, encoder_attention_heads)tf.Tensor可选) - 用于使编码器中注意力模块的选定头部失效的掩码。选择的掩码值在[0, 1]中:

    • 1 表示头部未被“掩盖”,

    • 0 表示头部被“掩盖”。

  • past_key_values(长度为config.n_layersTuple[Tuple[tf.Tensor]]) - 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values,用户可以选择仅输入最后一个decoder_input_ids(这些输入不具有其过去的键值状态)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • use_cache (bool, 可选, 默认为 True) — 如果设置为 True,则返回 past_key_values 键值状态,可用于加速解码(参见 past_key_values)。在训练期间设置为 False,在生成期间设置为 True

  • output_attentions (bool, 可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的 attentions。此参数仅在急切模式下使用,在图模式下,将使用配置中的值。

  • output_hidden_states (bool, 可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的 hidden_states。此参数仅在急切模式下使用,在图模式下,将使用配置中的值。

  • return_dict (bool, 可选) — 是否返回一个 ModelOutput 而不是一个普通的元组。这个参数可以在急切模式下使用,在图模式下,该值将始终设置为 True。

  • training (bool, 可选, 默认为 False) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间有不同的行为)。

返回

transformers.modeling_tf_outputs.TFBaseModelOutputWithPast 或 tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFBaseModelOutputWithPast 或一个 tf.Tensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包含根据配置(OPTConfig)和输入的不同元素。

  • last_hidden_state (tf.Tensor,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。

    如果使用了 past_key_values,则输出形状为 (batch_size, 1, hidden_size) 的序列的最后一个隐藏状态。

  • past_key_values (List[tf.Tensor], 可选, 当传递 use_cache=Trueconfig.use_cache=True 时返回) — 长度为 config.n_layerstf.Tensor 列表,每个张量的形状为 (2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见 past_key_values 输入)。

  • hidden_states (tuple(tf.Tensor)可选,当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)tf.Tensor 元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor)可选,当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)tf.Tensor 元组(每一层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

TFOPTModel 的前向方法,覆盖 __call__ 特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用 Module 实例,而不是这个,因为前者负责运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFOPTModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> model = TFOPTModel.from_pretrained("facebook/opt-350m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFOPTForCausalLM

class transformers.TFOPTForCausalLM

< source >

( config: OPTConfig **kwargs )

参数

  • config(OPTConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

顶部带有语言建模头的 OPT 模型变压器。

此模型继承自 TFPreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或者

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是,Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用诸如model.fit()之类的方法时,应该会“正常工作” - 只需以model.fit()支持的任何格式传递输入和标签即可!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量:

  • 只有input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个输入张量,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心任何这些,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None attention_mask: np.ndarray | tf.Tensor | None = None position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False **kwargs ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFCausalLMOutputWithPast or tuple(tf.Tensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    输入 ID 是什么?

  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选)- 用于避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 1 表示未被掩码的标记,

    • 0 表示被掩码的标记。

    注意力掩码是什么?

  • head_mask(形状为(num_hidden_layers, num_attention_heads)torch.Tensor可选)- 用于使注意力模块的选定头部无效的掩码。选择的掩码值在[0, 1]中:

    • 1 表示头部“未被掩码”,

    • 0 表示头部被掩码。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layers的元组tuple(torch.FloatTensor),每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。当模型用作序列到序列模型中的解码器时,只有在需要时才需要这两个额外的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。

    如果使用past_key_values,用户可以选择只输入最后的input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)— 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • labels(形状为(batch_size, sequence_length)torch.LongTensor可选)— 用于计算蒙版语言建模损失的标签。索引应该在[0, ..., config.vocab_size]范围内,或者为-100(请参阅input_ids文档字符串)。将索引设置为-100的标记将被忽略(蒙版),损失仅计算具有[0, ..., config.vocab_size]标签的标记。

  • use_cachebool可选)— 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(请参阅past_key_values)。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states

  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或一个tf.Tensor元组(如果传递了return_dict=False或当config.return_dict=False时)包含根据配置(OPTConfig)和输入的不同元素。

  • loss(形状为(n,)tf.Tensor可选,当提供labels时返回,其中 n 是非蒙版标签的数量)— 语言建模损失(用于下一个标记预测)。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_valuesList[tf.Tensor]可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每一层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或tuple(tf.Tensor):一个 transformers.modeling_tf_outputs.TFCausalLMOutputWithPast 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(OPTConfig)和输入的不同元素。

  • loss (形状为(n,)tf.Tensor, *可选*, 当提供labels`时返回) — 语言建模损失(用于下一个标记预测)。

  • logits (形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor`) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (List[tf.Tensor], 可选, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

  • hidden_states (tuple(tf.Tensor), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentions (tuple(tf.Tensor), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每一层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, TFOPTForCausalLM
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> model = TFOPTForCausalLM.from_pretrained("facebook/opt-350m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

JAXHide JAX 内容

FlaxOPTModel

class transformers.FlaxOPTModel

<来源>

( config: OPTConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

__call__

<来源>

( input_ids: Array attention_mask: Optional = None position_ids: Optional = None params: dict = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None dropout_rng: PRNGKey = None deterministic: bool = True ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(OPTConfig)和输入的不同元素。

  • last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    每层模型的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    在自注意力头中用于计算加权平均值的注意力 softmax 后的注意力权重。

示例:

>>> from transformers import AutoTokenizer, FlaxOPTModel

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> model = FlaxOPTModel.from_pretrained("facebook/opt-350m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

FlaxOPTForCausalLM

class transformers.FlaxOPTForCausalLM

<来源>

( config: OPTConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (OPTConfig) — 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

  • dtype (jax.numpy.dtype, 可选, 默认为jax.numpy.float32) — 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。

    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。

    如果要更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

在顶部具有语言建模头的 OPT 模型(线性层,其权重与输入嵌入相关联),例如用于自回归任务。

此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(例如下载或保存、调整输入嵌入、修剪头等)。

此模型还是一个 Flax Linen flax.nn.Module子类。将其用作常规的 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids: Array attention_mask: Optional = None position_ids: Optional = None params: dict = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None dropout_rng: PRNGKey = None deterministic: bool = True ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=False或当config.return_dict=False时)包括根据配置(OPTConfig)和输入的不同元素。

  • last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递了output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递了output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每一层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxOPTForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
>>> model = FlaxOPTForCausalLM.from_pretrained("facebook/opt-350m")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)

>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]

飞马

原文:huggingface.co/docs/transformers/v4.37.2/en/model_doc/pegasus

模型 空间

概述

Pegasus 模型是由 Jingqing Zhang、Yao Zhao、Mohammad Saleh 和 Peter J. Liu 于 2019 年 12 月 18 日提出的PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization

根据摘要,

  • Pegasus 的预训练任务故意与摘要相似:从输入文档中删除/屏蔽重要句子,并将其作为一个输出序列从剩余句子中生成,类似于提取式摘要。

  • Pegasus 在所有 12 个下游任务上实现了 SOTA 摘要性能,由 ROUGE 和人类评估测量。

这个模型是由sshleifer贡献的。作者的代码可以在这里找到。

使用提示

  • 具有与 BART 相同的编码器-解码器模型架构的序列到序列模型。Pegasus 在两个自监督目标函数上联合预训练:掩码语言建模(MLM)和一种新颖的摘要特定预训练目标,称为 Gap Sentence Generation(GSG)。

    • MLM:编码器输入标记被随机替换为掩码标记,并且必须由编码器预测(就像在 BERT 中一样)

    • GSG:整个编码器输入句子被第二个掩码标记替换并馈送到解码器,但是具有因果掩码以隐藏未来单词,就像常规的自回归变压器解码器一样。

  • 不支持 FP16(对此的帮助/想法赞赏!)。

  • 推荐使用 adafactor 优化器进行 pegasus 微调。

检查点

所有检查点都经过微调以用于摘要,除了pegasus-large,其他检查点都经过微调:

  • 每个检查点在磁盘上占用 2.2 GB,参数为 568M。

  • 不支持 FP16(对此的帮助/想法赞赏!)。

  • 在 v100 GPU 上,默认参数下,使用 fp32 对 xsum 进行摘要大约需要 400ms/样本。

  • 完整的复制结果和正确预处理的数据可以在这个Issue中找到。

  • 蒸馏检查点在这篇论文中有描述。

实现说明

  • 所有模型都是具有 16 层的变压器编码器-解码器。

  • 实现完全继承自 BartForConditionalGeneration

  • 一些关键配置差异:

    • 静态,正弦位置嵌入

    • 模型从 pad_token_id(其具有 0 个 token_embedding)开始生成。

    • 使用更多的 beam(num_beams=8

  • 所有预训练的 pegasus 检查点除了三个属性外都是相同的:tokenizer.model_max_length(最大输入大小),max_length(要生成的最大标记数)和length_penalty

  • 可以在convert_pegasus_tf_to_pytorch.py中找到将在作者的repo中训练的检查点转换的代码。

使用示例

>>> from transformers import PegasusForConditionalGeneration, PegasusTokenizer
>>> import torch

>>> src_text = [
...     """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."""
... ]

... model_name = "google/pegasus-xsum"
... device = "cuda" if torch.cuda.is_available() else "cpu"
... tokenizer = PegasusTokenizer.from_pretrained(model_name)
... model = PegasusForConditionalGeneration.from_pretrained(model_name).to(device)
... batch = tokenizer(src_text, truncation=True, padding="longest", return_tensors="pt").to(device)
... translated = model.generate(**batch)
... tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True)
... assert (
...     tgt_text[0]
...     == "California's largest electricity provider has turned off power to hundreds of thousands of customers."
... )

资源

PegasusConfig

class transformers.PegasusConfig

<来源>

( vocab_size = 50265 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 0 scale_embedding = False pad_token_id = 0 eos_token_id = 1 forced_eos_token_id = 1 **kwargs )

参数

  • vocab_size (int, optional, defaults to 50265) — PEGASUS 模型的词汇表大小。定义了在调用 PegasusModel 或 TFPegasusModel 时可以表示的不同标记数量。

  • d_model (int, optional, defaults to 1024) — 层和池化器层的维度。

  • encoder_layers (int, optional, defaults to 12) — 编码器层数。

  • decoder_layers (int, optional, defaults to 12) — 解码器层数。

  • encoder_attention_heads (int, optional, defaults to 16) — Transformer 编码器中每个注意力层的注意力头数。

  • decoder_attention_heads (int, optional, defaults to 16) — Transformer 解码器中每个注意力层的注意力头数。

  • decoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。

  • encoder_ffn_dim (int, optional, defaults to 4096) — 解码器中“中间”(通常称为前馈)层的维度。

  • activation_function (str or function, optional, defaults to "gelu") — 编码器和池化器中的非线性激活函数(函数或字符串)。如果是字符串,支持"gelu""relu""silu""gelu_new"

  • dropout (float, optional, defaults to 0.1) — 嵌入层、编码器和池化器中所有全连接层的丢弃概率。

  • attention_dropout (float, optional, defaults to 0.0) — 注意力概率的丢弃比例。

  • activation_dropout (float, optional, defaults to 0.0) — 全连接层内激活的丢弃比例。

  • max_position_embeddings (int, optional, defaults to 1024) — 此模型可能使用的最大序列长度。通常将其设置为较大的值以防万一(例如 512、1024 或 2048)。

  • init_std (float, optional, defaults to 0.02) — 用于初始化所有权重矩阵的截断正态初始化器的标准差。

  • encoder_layerdrop (float, optional, defaults to 0.0) — 编码器的 LayerDrop 概率。有关更多详细信息,请参阅 LayerDrop 论文)。

  • decoder_layerdrop (float, optional, defaults to 0.0) — 解码器的 LayerDrop 概率。有关更多详细信息,请参阅 LayerDrop 论文)。

  • scale_embedding (bool, optional, defaults to False) — 通过除以 sqrt(d_model)来缩放嵌入。

  • use_cache (bool, optional, defaults to True) — 模型是否应返回最后的键/值注意力(并非所有模型都使用)

  • forced_eos_token_id (int, optional, defaults to 1) — 当达到max_length时,强制作为最后生成的标记的标记 ID。通常设置为eos_token_id

这是用于存储 PegasusModel 配置的配置类。根据指定的参数实例化一个 PEGASUS 模型,定义模型架构。使用默认值实例化配置将产生类似于 PEGASUS google/pegasus-large架构的配置。

配置对象继承自 PretrainedConfig,可用于控制模型输出。阅读 PretrainedConfig 的文档以获取更多信息。

示例:

>>> from transformers import PegasusConfig, PegasusModel

>>> # Initializing a PEGASUS google/pegasus-large style configuration
>>> configuration = PegasusConfig()

>>> # Initializing a model (with random weights) from the google/pegasus-large style configuration
>>> model = PegasusModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

PegasusTokenizer

警告:add_tokens 目前不起作用。

class transformers.PegasusTokenizer

<来源>

( vocab_file pad_token = '<pad>' eos_token = '</s>' unk_token = '<unk>' mask_token = '<mask_2>' mask_token_sent = '<mask_1>' additional_special_tokens = None offset = 103 sp_model_kwargs: Optional = None **kwargs )

参数

  • vocab_file (str) — 包含实例化分词器所需词汇表的SentencePiece文件(通常具有 .spm 扩展名)。

  • pad_token (str, optional, 默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。

  • eos_token (str, optional, 默认为 "</s>") — 序列结束标记。

    在构建带有特殊标记的序列时,这不是用于序列结束的标记。使用的标记是 sep_token

  • unk_token (str, optional, 默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。

  • mask_token (str, optional, 默认为 "<mask_2>") — 用于屏蔽单个标记值的标记。在使用屏蔽语言建模(MLM)训练此模型时使用的标记。这是 PEGASUS 编码器在预训练期间尝试预测的标记。它对应于PEGASUS:用于抽象摘要的提取间隙句子预训练中的[MASK2]

  • mask_token_sent (str, optional, 默认为 "<mask_1>") — 用于屏蔽整个目标句子的标记。在使用间隙句子生成(GSG)训练此模型时使用的标记。这是 PEGASUS 解码器在预训练期间尝试预测的句子。它对应于PEGASUS:用于抽象摘要的提取间隙句子预训练中的[MASK1]

  • additional_special_tokens (List[str], optional) — 分词器使用的额外特殊标记。如果未提供额外的特殊标记,则使用 <mask_2>和 <unk_2 unk_102="">作为额外的特殊标记,对应于原始 PEGASUS 分词器仅在预训练中使用标记 2 - 104</unk_2></mask_2>

  • sp_model_kwargs (dict, optional) — 将传递给 SentencePieceProcessor.__init__() 方法。SentencePiece 的 Python 包装器可用于设置:

    • enable_sampling: 启用子词正则化。

    • nbest_size: 单字采样的采样参数。对于 BPE-Dropout 无效。

      • nbest_size = {0,1}: 不执行采样。

      • nbest_size > 1: 从 nbest_size 结果中抽样。

      • nbest_size < 0: 假设 nbest_size 为无限,并使用前向过滤和后向采样算法从所有假设(格)中抽样。

    • alpha: 用于单字采样的平滑参数,以及 BPE-dropout 合并操作的丢弃概率。

构建一个 PEGASUS 分词器。基于SentencePiece

此分词器继承自 PreTrainedTokenizer,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

<来源>

( token_ids_0 token_ids_1 = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表。

  • token_ids_1 (List[int], 可选) — 第二个序列对应的 ID 列表。

返回

List[int]

带有适当特殊标记的 输入 ID 列表。

通过连接和添加特殊标记,从序列或序列对构建用于序列分类任务的模型输入。PEGASUS 序列具有以下格式,其中 X 表示序列:

  • 单个序列:X </s>

  • 序列对:A B </s>(非预期用例)

BOS 从不使用。序列对不是预期的用例,但它们将在没有分隔符的情况下处理。

convert_tokens_to_string

<来源>

( tokens )

将一系列标记(字符串)转换为单个字符串。

get_special_tokens_mask

<来源>

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False )

获取列表,其中条目为 [1] 如果标记为 [eos] 或 [pad] 否则为 0。

num_special_tokens_to_add

<来源>

( pair = False )

只有 EOS

PegasusTokenizerFast

class transformers.PegasusTokenizerFast

<来源>

( vocab_file = None tokenizer_file = None pad_token = '<pad>' eos_token = '</s>' unk_token = '<unk>' mask_token = '<mask_2>' mask_token_sent = '<mask_1>' additional_special_tokens = None offset = 103 **kwargs )

参数

  • vocab_file (str) — SentencePiece 文件(通常具有 .spm 扩展名),其中包含实例化分词器所需的词汇表。

  • pad_token (str, 可选,默认为 "<pad>") — 用于填充的标记,例如在批处理不同长度的序列时使用。

  • eos_token (str, 可选,默认为 "</s>") — 序列结束标记。

    在使用特殊标记构建序列时,这不是用于序列结束的标记。使用的标记是 sep_token

  • unk_token (str, 可选,默认为 "<unk>") — 未知标记。词汇表中不存在的标记无法转换为 ID,而是设置为此标记。

  • mask_token (str, 可选,默认为 "<mask_2>") — 用于屏蔽单个标记值的标记。这是在使用掩码语言建模(MLM)训练此模型时使用的标记。这是 PEGASUS 编码器在预训练期间尝试预测的标记。它对应于 PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization 中的 [MASK2]

  • mask_token_sent (str, 可选,默认为 "<mask_1>") — 用于屏蔽整个目标句子的标记。这是在使用间隙句子生成(GSG)训练此模型时使用的标记。这是 PEGASUS 解码器在预训练期间尝试预测的句子。它对应于 PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization 中的 [MASK1]

  • additional_special_tokens (List[str], 可选) — 分词器使用的额外特殊标记。如果未提供额外特殊标记,则使用 <mask_2> 和 <unk_2 unk_102=""> 作为额外特殊标记,对应于仅在预训练中使用标记 2 - 104 的 原始 PEGASUS 分词器</unk_2></mask_2>

构建一个“快速” PEGASUS 分词器(由 HuggingFace 的 tokenizers 库支持)。基于 Unigram

该分词器继承自 PreTrainedTokenizerFast,其中包含大多数主要方法。用户应参考此超类以获取有关这些方法的更多信息。

build_inputs_with_special_tokens

< source >

( token_ids_0 token_ids_1 = None ) → export const metadata = 'undefined';List[int]

参数

  • token_ids_0 (List[int]) — 将添加特殊标记的 ID 列表

  • token_ids_1 (List[int], optional) — 可选的第二个序列对应的 ID 列表。

返回

List[int]

包含适当特殊标记的输入 ID 列表。

通过在序列末尾添加 eos 来构建模型输入。不会在前面添加 bos 标记。

  • 单个序列:X </s>

  • 序列对:A B </s>(不是预期的用法)

get_special_tokens_mask

< source >

( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False )

获取列表,如果标记是[eos]或[pad]则为[1],否则为 0。

PytorchHide Pytorch content

PegasusModel

class transformers.PegasusModel

< source >

( config: PegasusConfig )

参数

  • config (PegasusConfig) — 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

裸的 PEGASUS 模型输出原始隐藏状态,没有特定的头部。该模型继承自 PreTrainedModel。检查超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

该模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有信息。

forward

< source >

( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — 输入序列标记在词汇表中的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。选择在 [0, 1] 中的掩码值:

    • 对于未被掩码的标记,为 1,

    • 对于被掩码的标记,为 0。

    什么是注意力掩码?

  • decoder_input_ids (torch.LongTensor of shape (batch_size, target_sequence_length), optional) — 解码器输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是解码器输入 ID?

    Pegasus 使用pad_token_id作为decoder_input_ids生成的起始标记。如果使用了past_key_values,可以选择仅输入最后的decoder_input_ids(请参见past_key_values)。

  • decoder_attention_mask(形状为(batch_size, target_sequence_length)torch.LongTensor可选)- 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。因果掩码也将默认使用。

  • head_mask(形状为(encoder_layers, encoder_attention_heads)torch.Tensor可选)- 用于在编码器中使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被掩码

    • 0 表示头部被掩码

  • decoder_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选)- 用于在解码器中使注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被掩码

    • 0 表示头部被掩码

  • cross_attn_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选)- 用于在解码器中使交叉注意力模块的选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被掩码

    • 0 表示头部被掩码

  • encoder_outputstuple(tuple(torch.FloatTensor)可选)- 元组包括(last_hidden_state可选hidden_states可选attentionslast_hidden_state的形状为(batch_size, sequence_length, hidden_size)可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layers的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可以使用(参见past_key_values输入)以加速顺序解码。

    如果使用了past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1),而不是所有形状为(batch_size, sequence_length)decoder_input_ids

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权,以便将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • decoder_inputs_embeds(形状为(batch_size, target_sequence_length, hidden_size)torch.FloatTensor可选)- 可选择直接传递嵌入表示,而不是传递decoder_input_ids。如果使用了past_key_values,可以选择仅输入最后的decoder_inputs_embeds(请参见past_key_values)。这将非常有用,如果您想要更多控制权,以便将decoder_input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵。

    如果decoder_input_idsdecoder_inputs_embeds都未设置,则decoder_inputs_embedsinputs_embeds的值。

  • use_cache (booloptional) — 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • return_dict (bool, optional) — 是否返回一个 ModelOutput,而不是一个普通的元组。

返回

transformers.modeling_outputs.Seq2SeqModelOutput 或 tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含各种元素,取决于配置(PegasusConfig)和输入。

  • last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)) — 模型解码器最后一层的隐藏状态序列。

    如果使用了past_key_values,则只输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(torch.FloatTensor))optional,当传递了use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

  • decoder_hidden_states (tuple(torch.FloatTensor)optional,当传递了output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出和每一层的输出)。

    解码器在每一层输出处的隐藏状态,以及可选的初始嵌入输出。

  • decoder_attentions (tuple(torch.FloatTensor)optional,当传递了output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(torch.FloatTensor)optional,当传递了output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (torch.FloatTensor,形状为(batch_size, sequence_length, hidden_size)optional) — 模型编码器最后一层的隐藏状态序列。

  • encoder_hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)- 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层的输出,则为一个,每层的输出为一个)。

    每层编码器的隐藏状态以及可选的初始嵌入输出。

  • encoder_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

PegasusModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在之后调用Module实例而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, PegasusModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> model = PegasusModel.from_pretrained("google/pegasus-large")

>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt")
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 4, 1024]

PEGASUS 用于条件生成

class transformers.PegasusForConditionalGeneration

<来源>

( config: PegasusConfig )

参数

  • config(PegasusConfig)- 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

带有语言建模头的 PEGASUS 模型。可用于摘要。此模型继承自 PreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型也是 PyTorch torch.nn.Module子类。将其用作常规 PyTorch 模块,并参考 PyTorch 文档以获取有关一般用法和行为的所有相关信息。

forward

<来源>

( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor)- 输入序列标记在词汇表中的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。查看 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()以获取详细信息。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选)- 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • decoder_input_ids(形状为(batch_size, target_sequence_length)torch.LongTensor可选)- 解码器输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是 decoder input IDs?

    Pegasus 使用pad_token_id作为decoder_input_ids生成的起始标记。如果使用了past_key_values,可以选择仅输入最后一个decoder_input_ids(请参见past_key_values)。

  • decoder_attention_mask(形状为(batch_size, target_sequence_length)torch.LongTensor可选)- 默认行为:生成一个忽略decoder_input_ids中填充标记的张量。因果掩码也将默认使用。

  • head_mask(形状为(encoder_layers, encoder_attention_heads)torch.Tensor可选)- 用于使编码器中注意力模块的选定头部失效的掩码。在[0, 1]中选择的掩码值:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • decoder_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选)- 用于使解码器中注意力模块的选定头部失效的掩码。在[0, 1]中选择的掩码值:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • cross_attn_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选)- 用于使解码器中交叉注意力模块的选定头部失效的掩码。在[0, 1]中选择的掩码值:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • encoder_outputstuple(tuple(torch.FloatTensor)可选)- 元组包含(last_hidden_state可选hidden_states可选attentions) last_hidden_state的形状为(batch_size, sequence_length, hidden_size)可选)是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layerstuple(torch.FloatTensor)的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values输入)。

    如果使用了past_key_values,用户可以选择仅输入形状为(batch_size, 1)的最后一个decoder_input_ids(即那些没有将它们的过去键值状态提供给此模型的输入)而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,可以选择直接传递嵌入表示而不是传递input_ids。如果您想要更多控制如何将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • decoder_inputs_embeds(形状为(batch_size, target_sequence_length, hidden_size)torch.FloatTensor可选)- 可选地,可以直接传递嵌入表示而不是传递decoder_input_ids。如果使用了past_key_values,可以选择仅输入最后一个decoder_inputs_embeds(参见past_key_values)。如果您想要更多控制如何将decoder_input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

    如果decoder_input_idsdecoder_inputs_embeds都未设置,则decoder_inputs_embedsinputs_embeds的值。

  • use_cachebool可选)— 如果设置为True,则返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

  • labels(形状为(batch_size, sequence_length)torch.LongTensor可选)— 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]范围内,或者为-100(参见input_ids文档字符串)。将索引设置为-100的标记将被忽略(掩码),损失仅计算具有[0, ..., config.vocab_size]标签的标记。

返回

transformers.modeling_outputs.Seq2SeqLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.Seq2SeqLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(PegasusConfig)和输入的各种元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 语言建模损失。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstuple(torch.FloatTensor)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码。

  • decoder_hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层,则为嵌入的输出加上每层的输出)。

    解码器在每层输出的隐藏状态加上初始嵌入输出。

  • decoder_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选) — 模型编码器最后一层的隐藏状态序列。

  • encoder_hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(一个用于嵌入的输出,如果模型有嵌入层,+ 一个用于每个层的输出)。

    编码器在每一层的隐藏状态加上初始嵌入输出。

  • encoder_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

PegasusForConditionalGeneration 的前向方法,覆盖了__call__特殊方法。

尽管前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

摘要示例:

>>> from transformers import AutoTokenizer, PegasusForConditionalGeneration

>>> model = PegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")

>>> ARTICLE_TO_SUMMARIZE = (
...     "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
...     "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
...     "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="pt")

>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"])
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"California's largest electricity provider has turned off power to hundreds of thousands of customers."

PegasusForCausalLM

class transformers.PegasusForCausalLM

<来源>

( config )

forward

<来源>

( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → export const metadata = 'undefined';transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)torch.LongTensor) — 词汇表中输入序列标记的索引。默认情况下,如果提供,将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)torch.Tensor可选) — 用于避免对填充标记索引执行注意力的掩码。掩码值选择在[0, 1]之间:

    • 1 表示未被掩盖的标记,

    • 0 表示被掩盖的标记。

    什么是注意力掩码?

  • encoder_hidden_states(形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor可选) — 编码器最后一层的隐藏状态序列。如果模型配置为解码器,则在交叉注意力中使用。

  • encoder_attention_mask(形状为(batch_size, sequence_length)torch.FloatTensor可选) — 用于避免对编码器输入的填充标记索引执行注意力的掩码。如果模型配置为解码器,则在交叉注意力中使用此掩码。掩码值选择在[0, 1]之间:

  • head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选) — 用于使注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]之间:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • cross_attn_head_mask(形状为(decoder_layers, decoder_attention_heads)torch.Tensor可选) — 用于使交叉注意力模块中选择的头部失效的掩码。掩码值选择在[0, 1]之间:

    • 1 表示头部未被掩盖

    • 0 表示头部被掩盖

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=True或当config.use_cache=True时返回)— 长度为config.n_layers的元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,以及 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。当模型用作序列到序列模型中的解码器时,只有这两个额外的张量是必需的。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

    如果使用了past_key_values,用户可以选择仅输入最后的decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1)的张量,而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • labels(形状为(batch_size, sequence_length)torch.LongTensor可选)— 用于计算掩码语言建模损失的标签。索引应该在[0, ..., config.vocab_size]或-100(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(被masked),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

  • use_cachebool可选)— 如果设置为True,则返回past_key_values键值状态,可用于加速解码(参见past_key_values)。

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回的张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回的张量下的hidden_states

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或tuple(torch.FloatTensor)

一个 transformers.modeling_outputs.CausalLMOutputWithCrossAttentions 或一个torch.FloatTensor的元组(如果传递了return_dict=False或当config.return_dict=False时),包括根据配置(PegasusConfig)和输入的不同元素。

  • loss(形状为(1,)torch.FloatTensor可选,当提供labels时返回)— 语言建模损失(用于下一个标记预测)。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)torch.FloatTensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_statestuple(torch.FloatTensor)可选,当传递output_hidden_states=True或当config.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)torch.FloatTensor元组(如果模型有嵌入层的输出,则为一个,每层的输出为一个)。

    每层模型的输出的隐藏状态加上可选的初始嵌入输出。

  • attentionstuple(torch.FloatTensor)可选,当传递output_attentions=True或当config.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    注意力 softmax 后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(torch.FloatTensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)- 形状为(batch_size, num_heads, sequence_length, sequence_length)torch.FloatTensor元组(每层一个)。

    在交叉注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_valuestuple(tuple(torch.FloatTensor))可选,当传递use_cache=Trueconfig.use_cache=True时返回)- 长度为config.n_layerstorch.FloatTensor元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态。仅在config.is_decoder = True时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可以使用(查看past_key_values输入)以加速顺序解码。

示例:

>>> from transformers import AutoTokenizer, PegasusForCausalLM

>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> model = PegasusForCausalLM.from_pretrained("google/pegasus-large", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True

TensorFlow 隐藏 TensorFlow 内容

TFPegasusModel

class transformers.TFPegasusModel

<来源>

( config: PegasusConfig *inputs **kwargs )

参数

  • config(PegasusConfig)- 包含模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

PEGASUS 模型裸输出原始隐藏状态,没有任何特定的头部。这个模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

这个模型也是一个tf.keras.Model子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取与一般用法和行为相关的所有内容。

transformers中的 TensorFlow 模型和层接受两种格式的输入:

  • 将所有输入作为关键字参数(如 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典的第一个位置参数。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有了这种支持,当使用model.fit()等方法时,应该可以“正常工作” - 只需传递您的输入和标签,以任何model.fit()支持的格式!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctionalAPI 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量作为第一个位置参数:

  • 仅包含input_ids的单个张量,没有其他内容:model(input_ids)

  • 包含一个或多个输入张量的长度可变的列表,按照文档字符串中给定的顺序:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含与文档字符串中给定的输入名称相关联的一个或多个输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您不需要担心这些,因为您可以像对待其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False **kwargs ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)

参数

  • input_ids (tf.Tensor of shape (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (tf.Tensor of shape (batch_size, sequence_length), optional) — 避免对填充标记索引执行注意力的掩码。掩码值选定在[0, 1]之间:

    • 1 表示标记未被掩码,

    • 0 表示标记被掩码

    什么是注意力掩码?

  • decoder_input_ids (tf.Tensor of shape (batch_size, target_sequence_length), optional) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是解码器输入 ID?

    Pegasus 使用pad_token_id作为decoder_input_ids生成的起始标记。如果使用past_key_values,可以选择仅输入最后的decoder_input_ids(参见past_key_values)。

  • decoder_attention_mask (tf.Tensor of shape (batch_size, target_sequence_length), optional) — 将默认生成并忽略填充标记。不建议在大多数情况下设置此项。

  • decoder_position_ids (tf.Tensor of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]

  • head_mask (tf.Tensor of shape (encoder_layers, encoder_attention_heads), optional) — 编码器中用于使注意力模块中的特定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被掩码,

    • 0 表示头部被掩码

  • decoder_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 解码器中用于使注意力模块中的特定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被掩码,

    • 0 表示头部被掩码

  • cross_attn_head_mask (tf.Tensor of shape (decoder_layers, decoder_attention_heads), optional) — 交叉注意力模块中选定头部失效的掩码。掩码值选定在[0, 1]之间:

    • 1 表示头部未被掩码,

    • 0 表示头部被掩码

  • encoder_outputs (tf.FloatTensor, optional) — 编码器最后一层的隐藏状态输出。在解码器的交叉注意力中使用。形状为(batch_size, sequence_length, hidden_size)的序列是

  • past_key_values (Tuple[Tuple[tf.Tensor]] of length config.n_layers) — 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用past_key_values,用户可以选择仅输入最后的decoder_input_ids(即没有将其过去键值状态提供给此模型的那些)形状为(batch_size, 1),而不是所有decoder_input_ids的形状为(batch_size, sequence_length)

  • inputs_embeds (tf.Tensor of shape (batch_size, sequence_length, hidden_size), optional) — 可选地,您可以选择直接传递嵌入表示,而不是传递input_ids。如果您想要更多控制权来将input_ids索引转换为相关向量,而不是使用模型的内部嵌入查找矩阵,这将非常有用。

  • use_cache (bool, optional, 默认为True) — 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。在训练期间设置为False,在生成期间设置为True。output_attentions (bool, optional): 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅在急切模式下使用,在图模式下将使用配置中的值。

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。此参数可在急切模式下使用,在图模式下该值将始终设置为 True。

  • training (bool, optional, 默认为False) — 是否在训练模式下使用模型(一些模块,如 dropout 模块,在训练和评估之间具有不同的行为)。

返回

transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或者tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSeq2SeqModelOutput 或者一个tf.Tensor元组(如果传递return_dict=False或者config.return_dict=False)包含根据配置(PegasusConfig)和输入的不同元素。

  • last_hidden_state (tf.Tensor of shape (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层的输出的隐藏状态序列。

    如果仅使用past_key_values,则输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。

  • past_key_values (List[tf.Tensor], optional, 当传递use_cache=True或者config.use_cache=True时返回) — 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含解码器的预计算隐藏状态(注意力块中的键和值),可以用于加速顺序解码(参见past_key_values输入)。

  • decoder_hidden_states (tuple(tf.Tensor), optional, 当传递output_hidden_states=True或者config.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    解码器每层的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(tf.Tensor), optional, 当传递output_attentions=True或者config.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每个层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选) - 模型编码器最后一层的隐藏状态序列。

  • encoder_hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) - 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入输出,一个用于每一层的输出)。

    编码器在每一层的隐藏状态加上初始嵌入输出。

  • encoder_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) - 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

TFPegasusModel 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的方法需要在此函数内定义,但应该在此之后调用Module实例,而不是这个,因为前者负责运行预处理和后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, TFPegasusModel
>>> import tensorflow as tf

>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> model = TFPegasusModel.from_pretrained("google/pegasus-large")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFPegasusForConditionalGeneration

class transformers.TFPegasusForConditionalGeneration

<来源>

( config *inputs **kwargs )

参数

  • config(PegasusConfig) - 具有模型所有参数的模型配置类。使用配置文件初始化不会加载与模型关联的权重,只加载配置。查看 from_pretrained()方法以加载模型权重。

带有语言建模头的 PEGASUS 模型。可用于摘要。此模型继承自 TFPreTrainedModel。查看超类文档以了解库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型也是tf.keras.Model的子类。将其用作常规的 TF 2.0 Keras 模型,并参考 TF 2.0 文档以获取有关一般用法和行为的所有相关信息。

TensorFlow 模型和transformers中的层接受两种格式作为输入:

  • 将所有输入作为关键字参数(类似于 PyTorch 模型),或

  • 将所有输入作为列表、元组或字典放在第一个位置参数中。

支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。由于有这种支持,当使用model.fit()等方法时,您应该可以“轻松使用” - 只需以model.fit()支持的任何格式传递输入和标签!但是,如果您想在 Keras 方法之外使用第二种格式,比如在使用 KerasFunctional API 创建自己的层或模型时,有三种可能性可以用来收集所有输入张量作为第一个位置参数:

  • 只有input_ids的单个张量,没有其他内容:model(input_ids)

  • 一个长度可变的列表,其中包含一个或多个按照文档字符串中给定的顺序的输入张量:model([input_ids, attention_mask])model([input_ids, attention_mask, token_type_ids])

  • 一个字典,其中包含一个或多个与文档字符串中给定的输入名称相关联的输入张量:model({"input_ids": input_ids, "token_type_ids": token_type_ids})

请注意,当使用子类化创建模型和层时,您无需担心这些问题,因为您可以像对待任何其他 Python 函数一样传递输入!

call

<来源>

( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None decoder_position_ids: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None cross_attn_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: np.ndarray | tf.Tensor | None = None training: bool = False ) → export const metadata = 'undefined';transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)

参数

  • input_ids(形状为({0})tf.Tensor)— 输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    输入 ID 是什么?

  • attention_mask(形状为({0})tf.Tensor可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选定在[0, 1]之间:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

    注意力掩码是什么?

  • decoder_input_ids(形状为(batch_size, target_sequence_length)tf.Tensor可选)— 解码器输入序列标记在词汇表中的索引。

    可以使用 AutoTokenizer 来获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    解码器输入 ID 是什么?

    Pegasus 使用pad_token_id作为decoder_input_ids生成的起始标记。如果使用了past_key_values,则只需输入最后的decoder_input_ids(参见past_key_values)。

  • decoder_attention_mask(形状为(batch_size, target_sequence_length)tf.Tensor可选)— 默认情况下将生成并忽略填充标记。不建议为大多数用例设置此选项。

  • decoder_position_ids(形状为(batch_size, sequence_length)tf.Tensor可选)— 每个解码器输入序列标记在位置嵌入中的位置索引。选定范围为[0, config.max_position_embeddings - 1]

  • head_mask(形状为(encoder_layers, encoder_attention_heads)tf.Tensor可选)— 用于将编码器中注意力模块的选定头部置零的掩码。掩码值选定在[0, 1]之间:

    • 对于未被masked的头部为 1。

    • 对于被masked的头部为 0。

  • decoder_head_mask(形状为(decoder_layers, decoder_attention_heads)tf.Tensor可选)- 用于在解码器中的注意力模块中使选定头部失效的掩码。掩码值选择在[0, 1]中:

    • 1 表示头部未被“掩盖”,

    • 0 表示头部被“掩盖”。

  • cross_attn_head_mask(形状为(decoder_layers, decoder_attention_heads)tf.Tensor可选)- 用于使交叉注意力模块中选定头部失效的掩码。掩码值选择在[0, 1]中:

    • 1 表示头部未被“掩盖”,

    • 0 表示头部被“掩盖”。

  • encoder_outputstf.FloatTensor可选)- 编码器最后一层的输出的隐藏状态。用于解码器的交叉注意力。形状为(batch_size, sequence_length, hidden_size)是一个序列

  • past_key_values(长度为config.n_layersTuple[Tuple[tf.Tensor]])- 包含注意力块的预计算键和值隐藏状态。可用于加速解码。如果使用了past_key_values,用户可以选择仅输入最后一个decoder_input_ids(那些没有将它们的过去键值状态提供给此模型的)的形状为(batch_size, 1),而不是形状为(batch_size, sequence_length)的所有decoder_input_ids

  • inputs_embeds(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)- 可选地,可以选择直接传递嵌入表示,而不是传递input_ids。如果您希望更多地控制如何将input_ids索引转换为相关向量,而不是模型的内部嵌入查找矩阵,则这很有用。

  • use_cachebool可选,默认为True)- 如果设置为True,将返回past_key_values键值状态,并可用于加速解码(参见past_key_values)。在训练期间设置为False,在生成输出期间设置为True

  • output_attentionsbool可选)- 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions。此参数仅可在急切模式中使用,在图模式中,将使用配置中的值。

  • output_hidden_statesbool可选)- 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states。此参数仅可在急切模式中使用,在图模式中,将使用配置中的值。

  • return_dictbool可选)- 是否返回 ModelOutput 而不是普通元组。此参数仅可在急切模式中使用,在图模式中,该值将始终设置为 True。

  • trainingbool可选,默认为False)- 是否在训练模式中使用模型(某些模块,如丢弃模块,在训练和评估之间具有不同的行为)。

  • labels(形状为(batch_size, sequence_length)tf.tensor可选)- 用于计算掩盖语言建模损失的标签。索引应该在[0, ..., config.vocab_size]或-100(参见input_ids文档字符串)。索引设置为-100的标记将被忽略(掩盖),损失仅计算具有标签在[0, ..., config.vocab_size]中的标记。

返回

transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或tuple(tf.Tensor)

一个 transformers.modeling_tf_outputs.TFSeq2SeqLMOutput 或一个tf.Tensor元组(如果传递return_dict=Falseconfig.return_dict=False)包括根据配置(PegasusConfig)和输入不同元素。

  • 损失(形状为(n,)tf.Tensor可选,当提供标签时返回,其中 n 是非掩码标签的数量)— 语言建模损失。

  • logits(形状为(batch_size, sequence_length, config.vocab_size)tf.Tensor)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_valuesList[tf.Tensor]可选,当传递use_cache=Trueconfig.use_cache=True时返回)— 长度为config.n_layerstf.Tensor列表,每个张量的形状为(2, batch_size, num_heads, sequence_length, embed_size_per_head)

    包含预先计算的解码器隐藏状态(注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

  • decoder_hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    解码器在每一层输出的隐藏状态加上初始嵌入输出。

  • decoder_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    解码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 SoftMax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)tf.Tensor可选)— 模型编码器最后一层的隐藏状态序列。

  • encoder_hidden_statestuple(tf.Tensor)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)tf.Tensor元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    编码器在每一层输出的隐藏状态加上初始嵌入输出。

  • encoder_attentionstuple(tf.Tensor)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)tf.Tensor元组(每层一个)。

    编码器的注意力权重,在注意力 SoftMax 之后,用于计算自注意力头中的加权平均值。

TFPegasusForConditionalGeneration 的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

摘要示例:

>>> from transformers import AutoTokenizer, TFPegasusForConditionalGeneration

>>> model = TFPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum")

>>> ARTICLE_TO_SUMMARIZE = (
...     "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
...     "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
...     "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> inputs = tokenizer(ARTICLE_TO_SUMMARIZE, max_length=1024, return_tensors="tf")

>>> # Generate Summary
>>> summary_ids = model.generate(input_ids)
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))

JAXHide JAX 内容

FlaxPegasusModel

class transformers.FlaxPegasusModel

< source >

( config: PegasusConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config (PegasusConfig) — 模型配置类,包含模型的所有参数。使用配置文件初始化不会加载与模型关联的权重,只会加载配置。查看 from_pretrained() 方法以加载模型权重。

  • dtype (jax.numpy.dtype可选,默认为 jax.numpy.float32) — 计算的数据类型。可以是 jax.numpy.float32jax.numpy.float16(在 GPU 上)和 jax.numpy.bfloat16(在 TPU 上)之一。

    这可用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定了数据类型,所有计算将使用给定的 dtype 执行。

    请注意,这仅指定了计算的数据类型,不会影响模型参数的数据类型。

    如果希望更改模型参数的数据类型,请参阅 to_fp16() 和 to_bf16()。

裸 Pegasus 模型变压器输出原始隐藏状态,没有特定的头部。此模型继承自 FlaxPreTrainedModel。查看超类文档以获取库为所有模型实现的通用方法(如下载或保存、调整输入嵌入、修剪头等)。

此模型还是 Flax Linen flax.nn.Module 的子类。将其用作常规的 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有信息。

最后,此模型支持内置的 JAX 功能,例如:

__call__

< source >

( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为 (batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下会忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length)可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1]

    • 对于未被“masked”掩盖的标记为 1。

    • 对于被masked掩盖的标记为 0。

    什么是注意力掩码?

  • decoder_input_ids (jnp.ndarray,形状为 (batch_size, target_sequence_length)可选) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是 decoder input IDs?

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个张量,忽略decoder_input_ids中的填充标记。默认情况下也将使用因果掩码。

    如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。

  • position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量中的hidden_states

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False时),包含根据配置(PegasusConfig)和输入而异的各种元素。

  • last_hidden_state (jnp.ndarray of shape (batch_size, sequence_length, hidden_size)) — 模型解码器最后一层的隐藏状态序列。

    如果使用past_key_values,则只输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。

  • past_key_values (tuple(tuple(jnp.ndarray)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(jnp.ndarray)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(请参见past_key_values输入)。

  • decoder_hidden_states (tuple(jnp.ndarray), optional, 当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    解码器在每一层输出的隐藏状态加上初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray), optional, 当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentions (tuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state (jnp.ndarray,形状为(batch_size, sequence_length, hidden_size)可选) — 模型编码器最后一层的隐藏状态序列。

  • encoder_hidden_states (tuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组。

    编码器在每一层输出的隐藏状态加上初始嵌入输出。

  • encoder_attentions (tuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxPegasusPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的步骤需要在此函数内定义,但应该在此之后调用Module实例,而不是在此处调用,因为前者会处理运行前后处理步骤,而后者会默默地忽略它们。

示例:

>>> from transformers import AutoTokenizer, FlaxPegasusModel

>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> model = FlaxPegasusModel.from_pretrained("google/pegasus-large")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

encode

<来源>

( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids (jnp.ndarray,形状为(batch_size, sequence_length)) — 词汇表中输入序列标记的索引。默认情况下将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask (jnp.ndarray,形状为(batch_size, sequence_length)可选) — 避免在填充标记索引上执行注意力的掩码。掩码值选择在[0, 1]范围内:

    • 对于未被掩码的标记为 1,

    • 对于被掩码的标记为 0。

    什么是注意力掩码?

  • position_ids (numpy.ndarray,形状为(batch_size, sequence_length)可选) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

  • output_attentions (bool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_states (bool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dict (bool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或 tuple(torch.FloatTensor)

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个 torch.FloatTensor 元组(如果传递 return_dict=Falseconfig.return_dict=False)包括根据配置 (<class 'transformers.models.pegasus.configuration_pegasus.PegasusConfig'>) 和输入而异的各种元素。

  • last_hidden_state (jnp.ndarray,形状为 (batch_size, sequence_length, hidden_size)) — 模型最后一层输出的隐藏状态序列。

  • hidden_states (tuple(jnp.ndarray), 可选, 当传递 output_hidden_states=Trueconfig.output_hidden_states=True 时返回) — 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层输出处的隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), 可选, 当传递 output_attentions=Trueconfig.output_attentions=True 时返回) — 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration

>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)

decode

< source >

( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray,形状为 (batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode() 和 PreTrainedTokenizer.call()。

    什么是解码器输入 ID?

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包括 (last_hidden_state, 可选: hidden_states, 可选: attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)可选) 是编码器最后一层输出的隐藏状态序列。用于解码器的交叉注意力。

  • encoder_attention_mask (jnp.ndarray,形状为 (batch_size, sequence_length)可选) — 用于避免在填充标记索引上执行注意力的掩码。掩码值选在 [0, 1]

    • 对于未被掩盖的标记,为 1,

    • 对于被掩盖的标记,为 0。

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray,形状为 (batch_size, target_sequence_length)可选) — 默认行为:生成一个忽略 decoder_input_ids 中填充标记的张量。因果掩码也将默认使用。

    如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。

  • decoder_position_ids (numpy.ndarray,形状为 (batch_size, sequence_length)可选) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围 [0, config.max_position_embeddings - 1] 中选择。

  • past_key_valuesDict[str, np.ndarray]可选,由init_cache返回或传递先前的past_key_values时返回) — 预先计算的隐藏状态的字典(注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为[batch_size, max_length]

  • output_attentionsbool可选) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量下的attentions

  • output_hidden_statesbool可选) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量下的hidden_states

  • return_dictbool可选) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或 tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False时)包含根据配置(<class 'transformers.models.pegasus.configuration_pegasus.PegasusConfig'>)和输入的不同元素。

  • last_hidden_state(形状为(batch_size, sequence_length, hidden_size)jnp.ndarray) — 模型最后一层输出的隐藏状态序列。

    如果仅使用past_key_values,则输出形状为(batch_size, 1, hidden_size)的序列的最后一个隐藏状态。

  • past_key_valuestuple(tuple(jnp.ndarray))可选,当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(jnp.ndarray)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量,如果config.is_encoder_decoder=True还有 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块中的键和值以及可选地在交叉注意力块中,如果config.is_encoder_decoder=True)可用(请参见past_key_values输入)以加速顺序解码。

  • hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出,一个用于每一层的输出)。

    模型在每一层输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    注意力权重在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.add_cross_attention=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    解码器的交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

示例:

>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration

>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state

FlaxPegasusForConditionalGeneration

class transformers.FlaxPegasusForConditionalGeneration

<来源>

( config: PegasusConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )

参数

  • config(PegasusConfig)- 模型的所有参数的模型配置类。使用配置文件初始化不会加载与模型相关的权重,只会加载配置。查看 from_pretrained()方法以加载模型权重。

  • dtypejax.numpy.dtype可选,默认为jax.numpy.float32)- 计算的数据类型。可以是jax.numpy.float32jax.numpy.float16(在 GPU 上)和jax.numpy.bfloat16(在 TPU 上)之一。

    这可以用于在 GPU 或 TPU 上启用混合精度训练或半精度推断。如果指定,所有计算将使用给定的dtype执行。

    请注意,这仅指定计算的数据类型,不影响模型参数的数据类型。

    如果您希望更改模型参数的数据类型,请参阅 to_fp16()和 to_bf16()。

具有语言建模头的 PEGASUS 模型。可用于摘要。此模型继承自 FlaxPreTrainedModel。查看超类文档以了解库为其所有模型实现的通用方法(例如下载或保存,调整输入嵌入,修剪头等)。

此模型还是 Flax 亚麻flax.nn.Module子类。将其用作常规 Flax 模块,并参考 Flax 文档以获取有关一般用法和行为的所有相关信息。

最后,此模型支持 JAX 的固有特性,例如:

__call__

<来源>

( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)jnp.ndarray)- 词汇表中输入序列标记的索引。默认情况下,如果提供,将忽略填充。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)jnp.ndarray可选)- 避免在填充标记索引上执行注意力的掩码。选择的掩码值在[0, 1]中:

    • 对于未被掩码的标记为 1,

    • 对于被掩码的标记为 0。

    什么是注意力掩码?

  • decoder_input_ids(形状为(batch_size, target_sequence_length)jnp.ndarray可选)- 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参见 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是解码器输入 ID?

  • decoder_attention_mask (jnp.ndarray,形状为(batch_size, target_sequence_length)optional) — 默认行为:生成一个张量,忽略decoder_input_ids中的填充标记。因果掩码也将默认使用。

    如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参见论文中的图表 1。

  • position_ids (numpy.ndarray,形状为(batch_size, sequence_length)optional) — 每个输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

  • decoder_position_ids (numpy.ndarray,形状为(batch_size, sequence_length)optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。选择范围为[0, config.max_position_embeddings - 1]

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参见返回张量中的attentions

  • output_hidden_states (bool, optional) — 是否返回所有层的隐藏状态。有关更多详细信息,请参见返回张量中的hidden_states

  • return_dict (bool, optional) — 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput 或一个torch.FloatTensor元组(如果传递return_dict=Falseconfig.return_dict=False)包含根据配置(PegasusConfig)和输入的不同元素。

  • logits (jnp.ndarray,形状为(batch_size, sequence_length, config.vocab_size)) — 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • past_key_values (tuple(tuple(jnp.ndarray)), optional, 当传递use_cache=Trueconfig.use_cache=True时返回) — 长度为config.n_layerstuple(jnp.ndarray)元组,每个元组有 2 个形状为(batch_size, num_heads, sequence_length, embed_size_per_head)的张量和 2 个额外的形状为(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)的张量。

    包含预先计算的隐藏状态(自注意力块和交叉注意力块中的键和值),可用于加速顺序解码(参见past_key_values输入)。

  • decoder_hidden_states (tuple(jnp.ndarray)optional,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回) — 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每个层的输出)。

    每个层的解码器在每层输出的隐藏状态以及初始嵌入输出。

  • decoder_attentions (tuple(jnp.ndarray)optional,当传递output_attentions=Trueconfig.output_attentions=True时返回) — 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每个层一个)。

    解码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    解码器交叉注意力层的注意力权重,在注意力 softmax 之后,用于计算交叉注意力头中的加权平均值。

  • encoder_last_hidden_state(形状为(batch_size, sequence_length, hidden_size)jnp.ndarray可选)— 模型编码器最后一层的隐藏状态序列。

  • encoder_hidden_statestuple(jnp.ndarray)可选,当传递output_hidden_states=Trueconfig.output_hidden_states=True时返回)— 形状为(batch_size, sequence_length, hidden_size)jnp.ndarray元组(一个用于嵌入的输出 + 一个用于每一层的输出)。

    编码器在每一层的输出处的隐藏状态加上初始嵌入输出。

  • encoder_attentionstuple(jnp.ndarray)可选,当传递output_attentions=Trueconfig.output_attentions=True时返回)— 形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray元组(每层一个)。

    编码器的注意力权重,在注意力 softmax 之后,用于计算自注意力头中的加权平均值。

FlaxPegasusPreTrainedModel的前向方法,覆盖了__call__特殊方法。

虽然前向传递的配方需要在此函数内定义,但应该在此之后调用Module实例,而不是在此之后调用,因为前者负责运行前处理和后处理步骤,而后者则默默地忽略它们。

摘要示例:

>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration

>>> model = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-large')
>>> tokenizer = AutoTokenizer.from_pretrained('google/pegasus-large')

>>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np')

>>> # Generate Summary
>>> summary_ids = model.generate(inputs['input_ids']).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))

掩码填充示例:

>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration

>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")
>>> TXT = "My friends are <mask> but they eat too many carbs."

>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"]
>>> logits = model(input_ids).logits

>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = jax.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = jax.lax.top_k(probs)

>>> tokenizer.decode(predictions).split()

encode

<来源>

( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)

参数

  • input_ids(形状为(batch_size, sequence_length)jnp.ndarray)— 词汇表中输入序列标记的索引。默认情况下,如果提供填充,则将被忽略。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是输入 ID?

  • attention_mask(形状为(batch_size, sequence_length)jnp.ndarray可选)— 用于避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]中:

    • 对于未被masked的标记为 1,

    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • position_ids(形状为(batch_size, sequence_length)numpy.ndarray可选)— 每个输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • output_attentionsbool可选)— 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量下的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的hidden_states

  • return_dictbool可选)— 是否返回 ModelOutput 而不是普通元组。

返回

transformers.modeling_flax_outputs.FlaxBaseModelOutput 或tuple(torch.FloatTensor)

一个 transformers.modeling_flax_outputs.FlaxBaseModelOutput 或一个torch.FloatTensor元组(如果传递了return_dict=Falseconfig.return_dict=False)包括根据配置(<class 'transformers.models.pegasus.configuration_pegasus.PegasusConfig'>)和输入的不同元素。

  • last_hidden_state (jnp.ndarray of shape (batch_size, sequence_length, hidden_size)) — 模型最后一层的隐藏状态序列的输出。

  • hidden_states (tuple(jnp.ndarray), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — 元组包括形状为(batch_size, sequence_length, hidden_size)jnp.ndarray(一个用于嵌入的输出 + 一个用于每一层的输出)。

    模型在每一层的输出隐藏状态加上初始嵌入输出。

  • attentions (tuple(jnp.ndarray), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — 元组包括形状为(batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

示例:

>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration

>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)

decode

<来源>

( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None deterministic: bool = True params: dict = None dropout_rng: PRNGKey = None ) → export const metadata = 'undefined';transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

参数

  • decoder_input_ids (jnp.ndarray of shape (batch_size, target_sequence_length)) — 词汇表中解码器输入序列标记的索引。

    可以使用 AutoTokenizer 获取索引。有关详细信息,请参阅 PreTrainedTokenizer.encode()和 PreTrainedTokenizer.call()。

    什么是解码器输入 ID?

  • encoder_outputs (tuple(tuple(jnp.ndarray)) — 元组包括 (last_hidden_state, optional: hidden_states, optional: attentions) last_hidden_state 的形状为 (batch_size, sequence_length, hidden_size)optional) 是编码器最后一层的隐藏状态序列。用于解码器的交叉注意力。

  • encoder_attention_mask (jnp.ndarray of shape (batch_size, sequence_length), optional) — 避免在填充标记索引上执行注意力的掩码。掩码值选在[0, 1]之间:

    • 对于未被masked的标记为 1。

    • 对于被masked的标记为 0。

    什么是注意力掩码?

  • decoder_attention_mask (jnp.ndarray of shape (batch_size, target_sequence_length), optional) — 默认行为:生成一个张量,忽略decoder_input_ids中的填充标记。因果掩码也将默认使用。

    如果要更改填充行为,应根据需要进行修改。有关默认策略的更多信息,请参阅论文中的图表 1。

  • decoder_position_ids (numpy.ndarray of shape (batch_size, sequence_length), optional) — 每个解码器输入序列标记在位置嵌入中的位置索引。在范围[0, config.max_position_embeddings - 1]中选择。

  • past_key_values (Dict[str, np.ndarray], optional, returned by init_cache or when passing previous past_key_values) — 预先计算的隐藏状态的字典(在注意力块中的键和值),可用于快速自回归解码。预先计算的键和值隐藏状态的形状为 [batch_size, max_length]

  • output_attentions (bool, optional) — 是否返回所有注意力层的注意力张量。有关更多详细信息,请参阅返回张量中的attentions

  • output_hidden_statesbool可选)— 是否返回所有层的隐藏状态。有关更多详细信息,请参阅返回张量下的 hidden_states

  • return_dictbool可选)— 是否返回一个 ModelOutput 而不是一个普通元组。

返回

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或 tuple(torch.FloatTensor)

transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions 或一个 torch.FloatTensor 元组(如果传递了 return_dict=False 或当 config.return_dict=False 时)包含根据配置(<class 'transformers.models.pegasus.configuration_pegasus.PegasusConfig'>)和输入的不同元素。

  • logits(形状为 (batch_size, sequence_length, config.vocab_size)jnp.ndarray)— 语言建模头的预测分数(SoftMax 之前每个词汇标记的分数)。

  • hidden_statestuple(jnp.ndarray)可选,当传递了 output_hidden_states=True 或当 config.output_hidden_states=True 时返回)— 形状为 (batch_size, sequence_length, hidden_size)jnp.ndarray 元组(一个用于嵌入的输出 + 一个用于每层的输出)。

    每层模型输出的隐藏状态加上初始嵌入输出。

  • attentionstuple(jnp.ndarray)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    在注意力 softmax 之后的注意力权重,用于计算自注意力头中的加权平均值。

  • cross_attentionstuple(jnp.ndarray)可选,当传递了 output_attentions=True 或当 config.output_attentions=True 时返回)— 形状为 (batch_size, num_heads, sequence_length, sequence_length)jnp.ndarray 元组(每层一个)。

    在注意力 softmax 之后的交叉注意力权重,用于计算交叉注意力头中的加权平均值。

  • past_key_valuestuple(tuple(jnp.ndarray))可选,当传递了 use_cache=True 或当 config.use_cache=True 时返回)— 长度为 config.n_layersjnp.ndarray 元组的元组,每个元组包含自注意力和交叉注意力层的缓存键、值状态,如果模型用于编码器-解码器设置,则相关。仅在 config.is_decoder = True 时相关。

    包含预先计算的隐藏状态(注意力块中的键和值),可用于加速顺序解码。

示例:

>>> import jax.numpy as jnp
>>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration

>>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large")
>>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large")

>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)

>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id

>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
posted @ 2024-06-22 14:12  绝不原创的飞龙  阅读(42)  评论(0)    收藏  举报