P9185 [USACO23OPEN] Rotate and Shift B 题解
首先,我们很容易就能得出一个显而易见的结论:
若令原数组为 \(order\),\(K\) 个活跃位置分别为 \(A_1,A_2,...,A_K\),则
的操作就等价于将 \(order\) 数组顺时针旋转 \(x\) 次,即
再进行上述操作,最后逆时针旋转 \(x\) 次转回来。
因为顺时针和逆时针的旋转方向是相反的,都旋转 \(x\) 次正好抵消,所以上述结论的正确性也是显然的。
根据上述结论,题目所说的操作流程可以如下:
(其中 \(R\) 表示将 \(order\) 数组按 \(A\) 数组轮换的操作,\(+x\) 和 \(-x\)表示顺时针 / 逆时针旋转 \(x\) 次 \(order\) 数组的操作,\(x.\) 表示第 \(x\) 分钟进行的操作。)
这个过程中的顺时针和逆时针可以抵消,于是化简后的结果如下:
这样化简之后,每分钟的操作都变成了 \(R,+1\),我们称这样的一次操作为 \(S\)。
于是整个题目的操作流程变成了每分钟进行一次 \(S\) 操作,最后逆时针旋转 \(T\) 次即可。
但是每次 \(S\) 操作的时间都是 \(O(N)\) 的,总时间复杂度还是 \(O(TN)\),和暴力并无区别。
那么如何加快 \(S\) 操作?既然朴素地旋转、轮换是不行的,那么我们就考虑使用倍增加快 \(S\) 操作的速度。
具体而言:
- 
建立倍增数组数组 \(jmp\),其中 \(jmp_{i,j}\) 表示用 \(2^j\) 次 \(S\) 操作能够把 \(i\) 挪到的位置。 
- 
首先预处理 \(jmp\) 数组,令 \(jmp_{b_i,0}=i\),并令 \(jmp_{i,j}=jmp_{jmp_{i,j-1},j-1}\)(即从 \(i\) 用 \(2^{j-1}\) 次 \(S\) 操作挪到的位置开始再进行 \(2^{j-1}\) 次 \(S\) 操作。 
- 
接着枚举 \(2\) 的 \(k\) 次幂,若 \(2^k \le T\) 则进行 \(2^k\) 次 \(S\) 操作。 
最后别忘了逆时针再旋转 \(T\) 次就可以了。
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,k,t,tt; //tt是t的备份
int jmp[200031][64]; //倍增数组
int sor1[200031],sor2[200031],rot[200031],tmp[200031]; //order 数组,order 数组备份、A 数组、旋转辅助数组
void rotate1(){ //R 操作
	memset(tmp,-1,sizeof(tmp));
	for(int i=1;i<k;i++) tmp[rot[i]]=sor2[rot[i-1]];
	tmp[rot[0]]=sor2[rot[k-1]];
	for(int i=0;i<n;i++)
		if(tmp[i]+1) sor2[i]=tmp[i];
}
void rotate2(){ //顺时针旋转
	memset(tmp,0,sizeof(tmp));
	for(int i=0;i<n-1;i++) tmp[i]=sor2[i+1];
	tmp[n-1]=sor2[0];
	memcpy(sor2,tmp,sizeof(tmp));
}
void rotate3(){ //逆时针旋转
	memset(tmp,0,sizeof(tmp));
	for(int i=0;i<n;i++) tmp[i]=sor1[(i-tt%n+n)%n];
	memcpy(sor1,tmp,sizeof(tmp));
}
signed main(){
	cin>>n>>k>>t;
	for(int i=0;i<k;i++) cin>>rot[i];
	for(int i=0;i<n;i++) sor1[i]=sor2[i]=i;
	tt=t;
	
	rotate1(); //进行一次 R 操作 + 逆时针旋转一次,避免特判
	rotate2();
	
	for(int i=0;i<n;i++) jmp[sor2[i]][0]=i; //预处理 jmp 数组
	for(int j=1;j<=40;j++) //递推 jmp 数组
		for(int i=0;i<n;i++)
			jmp[i][j]=jmp[jmp[i][j-1]][j-1];
	for(int i=40;i>=0;i--){ //枚举 2^i
		if((1ll<<i)<=t){
			t-=(1ll<<i);
			for(int j=0;j<n;j++) tmp[jmp[j][i]]=sor1[j]; //进行 2^i 次 S 操作
			memcpy(sor1,tmp,sizeof(tmp));
		}
	}
	
	rotate3(); //逆时针旋转 T 次
	for(int i=0;i<n;i++) cout<<sor1[i]<<' ';
	return 0;
}
 
                    
                
 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号