AGC020C. Median Sum
记原序列的总和为 \(S\)
容易发现如果把空集也考虑进去的话,在左边任取一个子集,其和为 \(x\),那么一定可以在右边找到一个子集满足它的和为 \(S - x\)。也就是说,位于权值为 \(\frac{S}{2}\) 的左右两边的子集是对称的。
于是,我们就能推出我们需要求的中位数就是总和超过 \(\frac{S}{2}\) 的第一个子集,但直接做 01 背包的话复杂度会炸
我们可以使用 bitset 来加速一下即可
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
const int MX = 2005;
const int M = MX*MX;
int main() {
int n;
cin >> n;
vector<int> a(n);
rep(i, n) cin >> a[i];
int s = 0;
rep(i, n) s += a[i];
bitset<M> dp;
dp[0] = 1;
rep(i, n) dp |= dp<<a[i];
for (int i = (s+1)/2; i < M; ++i) {
if (dp[i]) {
cout << i << '\n';
return 0;
}
}
return 0;
}
AGC030D. Inversion Sum
线性期望 + 概率转移
把“对所有 \(2^Q\) 种操作方式求最终逆序对数之和”问题转化为先算每一对位置 \(i,j\) 最终成为逆序(即位置 \(i\) 的值大于位置 \(j\) 的值)的期望次数,最后把期望乘以 \(2^Q\) 得到“和”。
记 dp[i][j] 表示在当前已处理的前 \(t\) 个操作之后,位置 \(i\) 的值严格大于位置 \(j\) 的 概率。初始化时没有随机操作,dp[i][j] 是一个 0/1 值:
dp[i][j] = (a[i] > a[j]) ? 1 : 0;
处理一次可选交换 (x,y) 的转移
对于某个操作对 \((x,y)\),我们有 1/2 概率交换位置 \(x\) 和 \(y\)、1/2 不交换。考虑任意位置 \(i\):
-
比较
(x,i):如果不交换,概率为老的dp[x][i];如果交换,位置 \(x\) 上的是原来 \(y\) 的值,比较结果为老的dp[y][i]。因此新的概率是两者的平均:\[dp_{\text{new}}[x][i] = \frac{dp_{\text{old}}[x][i] + dp_{\text{old}}[y][i]}{2}. \] -
同理
(i,x):\[dp_{\text{new}}[i][x] = \frac{dp_{\text{old}}[i][x] + dp_{\text{old}}[i][y]}{2}. \] -
对于
(x,y)本身:不交换时比较结果仍是dp[x][y];交换时位置 \(x\) 与 \(y\) 的值对调,比较 \(x>y\) 在交换情况下等价于原来的dp[y][x]。因此\[dp_{\text{new}}[x][y] = \frac{dp_{\text{old}}[x][y] + dp_{\text{old}}[y][x]}{2}. \]
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using mint = modint1000000007;
int main() {
int n, q;
cin >> n >> q;
vector<int> a(n);
rep(i, n) cin >> a[i];
vector dp(n, vector<mint>(n));
rep(i, n)rep(j, n) dp[i][j] = a[i] > a[j];
mint inv2 = mint(2).inv();
rep(qi, q) {
int x, y;
cin >> x >> y;
--x; --y;
vector<mint> lx(n), rx(n);
vector<mint> ly(n), ry(n);
rep(i, n) lx[i] = dp[x][i];
rep(i, n) rx[i] = dp[i][x];
rep(i, n) ly[i] = dp[y][i];
rep(i, n) ry[i] = dp[i][y];
rep(i, n) {
dp[x][i] = dp[y][i] = (lx[i]+ly[i])*inv2;
dp[i][x] = dp[i][y] = (rx[i]+ry[i])*inv2;
}
dp[x][y] = dp[y][x] = (lx[y]+ly[x])*inv2;
}
mint ans;
rep(j, n)rep(i, j) ans += dp[i][j];
ans *= mint(2).pow(q);
cout << ans.val() << '\n';
return 0;
}
AGC044B. Joker
按顺序从点 \(P_i\) 出发跑 \(\mathrm{bfs}\)
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using P = pair<int, int>;
inline void chmin(int& a, int b) { if (a > b) a = b; }
const int di[] = {-1, 0, 1, 0};
const int dj[] = {0, 1, 0, -1};
int main() {
int n;
cin >> n;
vector d(n, vector<int>(n));
rep(i, n)rep(j, n) {
d[i][j] = i;
chmin(d[i][j], j);
chmin(d[i][j], n-1-i);
chmin(d[i][j], n-1-j);
}
vector a(n, vector<int>(n, 1));
int ans = 0;
rep(ni, n*n) {
int num;
cin >> num;
--num;
int si = num/n, sj = num%n;
ans += d[si][sj];
a[si][sj]--;
queue<P> q;
q.emplace(si, sj);
while (q.size()) {
auto [i, j] = q.front(); q.pop();
int nd = d[i][j]+a[i][j];
rep(v, 4) {
int ni = i+di[v], nj = j+dj[v];
if (ni < 0 or nj < 0 or ni >= n or nj >= n) continue;
if (d[ni][nj] <= nd) continue;
d[ni][nj] = nd;
q.emplace(ni, nj);
}
}
}
cout << ans << '\n';
return 0;
}
ARC101. Median of Medians
二分答案
假设答案为 \(x\)
求满足中位数 \(\geqslant x\) 的区间数至少有 \(\left\lceil \dfrac{\frac{n(n+1)}{2}}{2} \right\rceil\) 个的 \(x\) 的最大值
其中求“中位数 \(\geqslant x\) 的区间数”就是 P3031
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
int main() {
int n;
cin >> n;
vector<int> a(n);
rep(i, n) cin >> a[i];
int ac = 0, wa = 1001001001;
while (abs(ac-wa) > 1) {
int wj = (ac+wa)/2;
auto ok = [&]{
ll cnt = 0;
fenwick_tree<int> t(2*n+1);
int x = 0;
t.add(n, 1);
rep(i, n) {
if (a[i] >= wj) x++;
else x--;
cnt += t.sum(0, n+x+1);
t.add(n+x, 1);
}
return cnt*2 >= n*ll(n+1)/2;
}();
(ok ? ac : wa) = wj;
}
cout << ac << '\n';
return 0;
}
ARC117C. Tricolor Pyramid
打表发现是 \((-a-b) \bmod 3\),所以只要计算组合数 \(\bmod 3\),如果 \(n\) 是
偶数,再乘上 \(-1\) 即可。
因为这里是小模数,用 \(\mathrm{lucas}\) 算组合数会比较方便。
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
const int mod = 3;
//const int mod = 998244353;
//const int mod = 1000000007;
struct mint {
ll x;
mint(ll x=0):x((x%mod+mod)%mod) {}
mint operator-() const {
return mint(-x);
}
mint& operator+=(const mint a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint a) {
(x *= a.x) %= mod;
return *this;
}
mint operator+(const mint a) const {
return mint(*this) += a;
}
mint operator-(const mint a) const {
return mint(*this) -= a;
}
mint operator*(const mint a) const {
return mint(*this) *= a;
}
mint pow(ll t) const {
if (!t) return 1;
mint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// for prime mod
mint inv() const {
return pow(mod-2);
}
mint& operator/=(const mint a) {
return *this *= a.inv();
}
mint operator/(const mint a) const {
return mint(*this) /= a;
}
};
istream& operator>>(istream& is, mint& a) {
return is >> a.x;
}
ostream& operator<<(ostream& os, const mint& a) {
return os << a.x;
}
struct modinv {
int n; vector<mint> d;
modinv(): n(2), d({0,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(-d[mod%n]*(mod/n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} invs;
struct modfact {
int n; vector<mint> d;
modfact(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*n), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} facts;
struct modfactinv {
int n; vector<mint> d;
modfactinv(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*invs(n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} ifacts;
mint comb(int n, int k) {
if (n < k || k < 0) return 0;
return facts(n)*ifacts(k)*ifacts(n-k);
}
mint lucas(int n, int k) {
if (n == 0 && k == 0) return 1;
mint res = comb(n%3, k%3);
return res*lucas(n/3, k/3);
}
int main() {
int n;
string s;
cin >> n >> s;
string t = "BWR";
mint ans;
rep(i, n) {
int x = 0;
while (t[x] != s[i]) ++x;
ans += lucas(n-1, i)*x;
}
if (n%2 == 0) ans = -ans;
cout << t[ans.x] << '\n';
return 0;
}
ARC160. Power Up
记 dp[i][j] 对数字 \(1, 2, \cdots, i\) 进行操作,生成 \(j\) 个 \(i+1\)
然后用后缀和优化一下即可
代码实现
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using mint = modint998244353;
int main() {
int n;
cin >> n;
const int M = 200055;
vector<int> c(M);
rep(i, n) {
int a;
cin >> a;
c[a]++;
}
vector<mint> dp(1, 1);
rep(a, M) {
int x = c[a];
vector<mint> p(((int)dp.size()+x)/2+1);
swap(dp, p);
rep(i, p.size()) {
int nx = x+i;
dp[nx/2] += p[i];
}
for (int i = (int)dp.size()-2; i >= 0; --i) dp[i] += dp[i+1];
}
mint ans = dp[0];
cout << ans.val() << '\n';
return 0;
}
ABC058D. ###
\( \sum\limits_{1 \leqslant i<j \leqslant n} (x_j-x_i) \times \sum\limits_{1 \leqslant k<l \leqslant n} (x_l-x_k) \)
只考虑第一项,第二项同理
\( \begin{aligned} \sum\limits_{1 \leqslant i<j \leqslant n} (x_j-x_i) &= \sum_{i=1}^n\sum_{j=i+1}^n (x_j - x_i)\\ &= \sum_{i=1}^n\sum_{j=i+1}^n x_j - \sum_{i=1}^n\sum_{j=i+1}^n x_i\\ &= \sum_{j=2}^n\sum_{i=1}^{j-1} x_j - \sum_{i=1}^n (n-i)x_i\\ &= \sum_{i=2}^n (i-1)x_i - \sum_{i=1}^n (n-i)x_i\\ &= \sum\limits_{i=1}^n (i-1 - (n-i)) x_i \end{aligned} \)
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using mint = modint1000000007;
mint f(int n) {
mint res;
rep(i, n) {
int x;
cin >> x;
res += mint(x)*(i-(n-i-1));
}
return res;
}
int main() {
int n, m;
cin >> n >> m;
mint x = f(n);
mint y = f(m);
mint ans = x*y;
cout << ans.val() << '\n';
return 0;
}
ABC127E. Cell Distance
\( \sum\sum (|x_i-x_j| + |y_i-y_j|) = \sum\sum |x_i - x_j| + \sum\sum |y_i-y_j| \)
所以,\(x\) 和 \(y\) 可以分别单独考虑
这里仅讨论 \(x\) 的贡献,\(y\) 是类似的
\( \begin{aligned} \displaystyle \sum_{\text{所有的放法}}\sum_i\sum_j |x_i - x_j| &= \sum_i\sum_j\sum_{\text{所有的放法}} |x_i - x_j|\\ &= \sum_i\sum_j |x_i-x_j| \times {}_{nm-2}C_{k-2}\\ &= {}_{nm-2}C_{k-2} \sum_i\sum_j |x_i - x_j|\\ &= {}_{nm-2}C_{k-2} \sum_{d=0}^{n-1} d \times (n-d) \times m \times m \end{aligned} \)
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using mint = modint1000000007;
struct modinv {
int n; vector<mint> d;
modinv(): n(2), d({0,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(-d[mint::mod()%n]*(mint::mod()/n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} invs;
struct modfact {
int n; vector<mint> d;
modfact(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*n), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} facts;
struct modfactinv {
int n; vector<mint> d;
modfactinv(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*invs(n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} ifacts;
mint comb(int n, int k) {
if (n < k || k < 0) return 0;
return facts(n)*ifacts(k)*ifacts(n-k);
}
int main() {
int n, m, k;
cin >> n >> m >> k;
mint ans;
rep(i, n) ans += mint(i)*(n-i)*m*m;
rep(j, m) ans += mint(j)*(m-j)*n*n;
ans *= comb(n*m-2, k-2);
cout << ans.val() << '\n';
return 0;
}
ABC130F. Enclosed Points
本题的核心在于转化计数对象!
不要直接计算集合 \(T\),而是转为统计“点 \(P\) 被计数的次数”的总和!
这样一来,问题就拆解为:
- "\(T\) 包含点 \(P\) 时,其他点任意选" 的 \(2^{N-1}\) 种情况
- \(T\) 不包含点 \(P\) 时,只有 \(T\) 斜跨这个点对应的一三象限或二四象限时满足。可以先用扫描线求出点 \(P\) 的四个象限上包含的点数,然后通过容斥解决。
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using P = pair<int, int>;
using mint = modint998244353;
mint f(int a, int b, int c, int d) {
mint res;
vector<int> num = {a, b, c, d};
vector<mint> o(4), ox(4);
rep(i, 4) {
ox[i] = mint(2).pow(num[i]);
o[i] = ox[i]-1;
}
res += ox[0]*o[1]*o[2]*ox[3];
res += o[0]*ox[1]*ox[2]*o[3];
res -= o[0]*o[1]*o[2]*o[3];
res += ox[0]*ox[1]*ox[2]*ox[3];
return res;
}
int main() {
int n;
cin >> n;
vector<P> ps(n);
rep(i, n) cin >> ps[i].first >> ps[i].second;
{ // compress x
map<int, int> mp;
rep(i, n) mp[ps[i].first] = 0;
int j = 0;
for (auto&& x : mp) x.second = j++;
rep(i, n) ps[i].first = mp[ps[i].first];
}
{ // compress y
map<int, int> mp;
rep(i, n) mp[ps[i].second] = 0;
int j = 0;
for (auto&& x : mp) x.second = j++;
rep(i, n) ps[i].second = mp[ps[i].second];
}
ranges::sort(ps);
vector<int> a(n), b(n), c(n), d(n);
rep(_, 2) {
{ // calc a, b
fenwick_tree<int> t(n);
rep(i, n) {
a[i] = t.sum(0, ps[i].second);
b[i] = i-a[i];
t.add(ps[i].second, 1);
}
}
ranges::reverse(ps);
swap(a, c);
swap(b, d);
ranges::reverse(a);
ranges::reverse(b);
ranges::reverse(c);
ranges::reverse(d);
}
mint ans;
rep(i, n) {
ans += f(a[i], b[i], c[i], d[i]);
}
cout << ans.val() << '\n';
return 0;
}
ABC149F. Surrounded Nodes
枚举包含在内部的白点,直接求包含这个点的最小连通块是困难的
但我们可以求它不包含在内部的最小连通块的个数
假设点 \(v\) 是包含在内部的白点,考察以点 \(v\) 为根的所有子树
全部染色数\((2^{N-1})\) \(-\) 都染白色 \((1)\) \(-\) 只有一个子树有黑点\((\sum (2^{T_{c_i}}-1))\)
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using mint = modint1000000007;
int main() {
int n;
cin >> n;
vector<vector<int>> to(n);
rep(i, n-1) {
int a, b;
cin >> a >> b;
--a; --b;
to[a].push_back(b);
to[b].push_back(a);
}
mint ans;
auto dfs = [&](auto& f, int v, int p=-1) -> int {
int res = 1;
vector<int> ts;
for (int u : to[v]) {
if (u == p) continue;
int t = f(f, u, v);
res += t;
ts.push_back(t);
}
if (p != -1) {
ts.push_back(n-res);
}
mint now = mint(2).pow(n-1)-1;
for (int t : ts) {
now -= mint(2).pow(t)-1;
}
ans += now;
return res;
};
dfs(dfs, 0);
ans /= mint(2).pow(n);
cout << ans.val() << '\n';
return 0;
}
ABC204F. Hanjo 2
状压dp+矩阵快速幂
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
using mint = modint998244353;
template<typename T>
struct Matrix {
int h, w;
vector<vector<T>> d;
Matrix() {}
Matrix(int h, int w, T val=0): h(h), w(w), d(h, vector<T>(w,val)) {}
Matrix& unit() {
assert(h == w);
rep(i,h) d[i][i] = 1;
return *this;
}
const vector<T>& operator[](int i) const { return d[i];}
vector<T>& operator[](int i) { return d[i];}
Matrix operator*(const Matrix& a) const {
assert(w == a.h);
Matrix r(h, a.w);
rep(i,h)rep(k,w)rep(j,a.w) {
r[i][j] += d[i][k]*a[k][j];
}
return r;
}
Matrix pow(long long t) const {
assert(h == w);
if (!t) return Matrix(h,h).unit();
if (t == 1) return *this;
Matrix r = pow(t>>1);
r = r*r;
if (t&1) r = r*(*this);
return r;
}
};
int main() {
int h; ll w;
cin >> h >> w;
int n = 1<<h;
Matrix<mint> d(n, n);
rep(s, n) {
rep(x, n) { // x集合:没有被左边一列占用的行
if (x&s) continue;
for (int y = x;; y = (y-1)&x) { // y集合:选哪些行横着放2*1
int ns = 0;
rep(i, h) {
if (x>>i&1) {
if (y>>i&1) { // 横着放
ns |= 1<<i; // 向右延伸一格
}
else { // 竖着放
if (i == h-1) { ns = -1; break; }
if (s>>i>>1&1) { ns = -1; break; } // i+1已被左边占用
if (x>>i>>1&1) { ns = -1; break; } // i+1没在x中,没法配对
}
}
}
if (ns != -1) {
d[s][ns] += 1;
}
if (!y) break;
}
}
}
Matrix<mint> x(n, 1);
x[0][0] = 1;
x = d.pow(w)*x;
mint ans = x[0][0];
cout << ans.val() << '\n';
return 0;
}
ABC223H. Xor Query
前缀线性基的板题
对于每一位上的基底,尽可能挂越靠右的数
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
const int D = 60;
template<typename T>
struct MaxBasis {
vector<T> d;
vector<int> w;
MaxBasis(): d(D), w(D) {}
void add(T x, int nw) {
rep(i, D) if (x>>i&1) {
if (d[i]) {
if (nw > w[i]) swap(d[i], x), swap(w[i], nw);
x ^= d[i];
}
else {
d[i] = x;
w[i] = nw;
break;
}
}
}
bool solve(int l, ll x) {
rep(i, D) if (x>>i&1) {
if (w[i] >= l) x ^= d[i];
}
return x == 0;
}
};
struct Q {
int i, l; ll x;
Q(int i, int l, ll x): i(i), l(l), x(x) {}
};
int main() {
cin.tie(nullptr) -> sync_with_stdio(false);
int n, q;
cin >> n >> q;
vector<ll> a(n);
rep(i, n) cin >> a[i];
vector<vector<Q>> qs(n);
rep(qi, q) {
int l, r; ll x;
cin >> l >> r >> x;
--l; --r;
qs[r].emplace_back(qi, l, x);
}
MaxBasis<ll> mb;
vector<bool> ans(q);
rep(i, n) {
mb.add(a[i], i);
for (auto [qi, l, x] : qs[i]) {
ans[qi] = mb.solve(l, x);
}
}
rep(i, q) {
if (ans[i]) puts("Yes");
else puts("No");
}
return 0;
}
ABC229G. Longest Y
双指针
先预处理出每个 Y 左边有多少个 .,对于一段区间将所有的 Y 交换到一起意味着让区间里每个 Y 处左边的 . 数相同,而 “让区间里每个 Y 处左边的 . 数相同”的最小操作次数是个经典问题,就是 LC462。然后预处理一下 . 数序列的前缀和就可以做到 \(O(1)\) 判定。
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
int main() {
string s; ll k;
cin >> s >> k;
int n = s.size();
vector<int> a;
rep(i, n) if (s[i] == 'Y') a.push_back(i-a.size());
n = a.size();
vector<ll> d(n+1);
rep(i, n) d[i+1] = d[i]+a[i];
int ans = 0;
int r = 0;
rep(l, n) {
while (r < n) {
int nr = r+1;
int c = (l+nr)/2;
ll now = ll(c-l)*a[c] - (d[c]-d[l]);
now += (d[nr]-d[c]) - ll(nr-c)*a[c];
if (now > k) break;
r = nr;
}
ans = max(ans, r-l);
}
cout << ans << '\n';
return 0;
}
ABC230F. Predilection
原题可以理解成对原序列划分成若干段,接着分别对每段求和,就得到了一个新的序列 \(B\),问能生成多少种本质不同的序列 \(B\)
可以发现每次操作,原序列的前缀和序列 \(S\) 中都会少一个数(显然不会删掉 \(S_0\) 和 \(S_n\)),那么本题就转化成了有多少个本质不同的序列 \((S_1, S_2, \cdots, S_{n-1})\) 的子序列,而这个问题是经典的dp题。
记 dp[i] 表示最后取的是数字 \(S_i\) 的本质不同的子序列个数
转移方程:
\( \displaystyle dp[i] = \sum_{j \leqslant i-1} [S_i \ \text{上一次出现的位置} \leqslant j] \ dp[j] \)
可以用 map 来维护 \(S_i\) 上一次出现的位置
这样一来时间复杂度就是 \(\mathcal{O}(n^2)\)
下面考虑进行优化:
可以考虑容斥
\( \displaystyle dp[i+1] = dp[i] + (dp[i] - dp[\operatorname{last}[S_i]]) \)
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
using mint = modint998244353;
int main() {
int n;
cin >> n;
vector<ll> a(n);
rep(i, n) cin >> a[i];
vector<ll> s(n+1);
rep(i, n) s[i+1] = s[i]+a[i];
s.erase(s.begin());
s.pop_back();
n--;
mint ans = 1;
map<ll, mint> dp;
rep(i, n) {
mint tmp = ans;
ans += ans-dp[s[i]];
dp[s[i]] = tmp;
}
cout << ans.val() << '\n';
return 0;
}
ABC230G. GCD Permutation
记 \(f(A)\) 表示从 \(A\) 中任选两个数不互素的二元组的个数
那么答案就是 \(\sum\limits_{k=2}^n f(P_{ki})\mu'(k)\),这里的 \(P_{ki}\) 指由 \(P\) 中所有下标为 \(k\) 的倍数的数构成的子序列,\(\mu(k) = -\mu(k)\)
\(f(A) = \sum\limits_{k=2}^n \mu'(k) \times \text{能被}\, k \, \text{整除的} \, A_i \, 的数中任选两个数(可以两个都选同一个数)的方案数\)
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
using P = pair<int, int>;
struct Sieve {
int n;
vector<int> f, primes;
Sieve(int n=1): n(n), f(n+1) {
f[0] = f[1] = -1;
for (ll i = 2; i <= n; ++i) {
if (f[i]) continue;
primes.push_back(i);
f[i] = i;
for (ll j = i*i; j <= n; j += i) {
if (!f[j]) f[j] = i;
}
}
}
vector<int> factorList(int x) {
vector<int> res;
while (x != 1) {
res.push_back(f[x]);
x /= f[x];
}
return res;
}
vector<P> factor(int x) {
vector<int> fl = factorList(x);
if (fl.size() == 0) return {};
vector<P> res(1, P(fl[0], 0));
for (int p : fl) {
if (res.back().first == p) {
res.back().second++;
}
else {
res.emplace_back(p, 1);
}
}
return res;
}
vector<int> divisors2(int x) {
auto ps = factor(x);
vector<int> res{1};
for (auto [p, _] : ps) {
for (int i = res.size()-1; i >= 0; --i) {
res.push_back(res[i]*p);
}
}
res.erase(res.begin());
return res;
}
};
ll c2(ll n) { return n*(n+1)/2; }
int main() {
int n;
cin >> n;
Sieve prime(n);
vector<int> a(n+1);
rep(i, n) cin >> a[i+1];
vector<int> mu(n+1, -1);
mu[1] = 0;
for (int p : prime.primes) {
for (int i = p; i <= n; i += p) mu[i] = -mu[i];
for (ll i = (ll)p*p; i <= n; i += (ll)p*p) mu[i] = 0;
}
vector<vector<int>> ds(n+1);
for (int i = 1; i <= n; ++i) {
ds[i] = prime.divisors2(i);
}
ll ans = 0;
for (int k = 2; k <= n; ++k) {
if (mu[k] == 0) continue;
ll now = 0;
unordered_map<int, int> s;
for (int i = k; i <= n; i += k) {
for (int x : ds[a[i]]) s[x]++;
}
for (auto [j, cnt] : s) now += c2(cnt)*mu[j];
ans += now*mu[k];
}
cout << ans << '\n';
return 0;
}
ABC233F. Swap and Sort
原题其实就是给定一张 \(N\) 个点 \(M\) 条边的图,顶点 \(i\) 上放有棋子 \(P_i\) 。一条边直接相连的两端点可以交换其上放置的棋子。问是否能让棋子 \(p_i\) 落在点 \(i\) 上。对于树的情况比较简单,可以从叶子节点 \(V\) 开始搜,在整棵树上找是否有哪个点上放有棋子 \(v\),如果找到了的话,那么这个叶节点及其和它父亲相连的边就可以不考虑了。那么对于一般图的话,只需考虑每个连通块的生成树即可。
代码实现
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); ++i)
struct Edge {
int to, id;
Edge(int to, int id): to(to), id(id) {}
};
int main() {
int n;
cin >> n;
vector<int> P(n);
rep(i, n) cin >> P[i];
rep(i, n) P[i]--;
int m;
cin >> m;
dsu uf(n);
vector<vector<Edge>> g(n);
rep(i, m) {
int a, b;
cin >> a >> b;
--a; --b;
if (uf.same(a, b)) continue;
uf.merge(a, b);
g[a].emplace_back(b, i+1);
g[b].emplace_back(a, i+1);
}
vector<int> ans;
rep(sv, n) if (uf.leader(sv) == sv) {
auto get = [&](auto& f, int v, int tg, int p=-1) -> bool {
if (P[v] == tg) return true;
for (auto [u, id] : g[v]) {
if (u == p) continue;
if (f(f, u, tg, v)) {
ans.push_back(id);
swap(P[v], P[u]);
return true;
}
}
return false;
};
auto dfs = [&](auto& f, int v, int p=-1) -> void {
for (auto [u, id] : g[v]) {
if (u == p) continue;
f(f, u, v);
}
if (!get(get, v, v)) {
puts("-1");
exit(0);
}
};
dfs(dfs, sv);
}
cout << ans.size() << '\n';
for (int i : ans) cout << i << ' ';
return 0;
}
ABC233G. Strongest Takahashi
注意到如果能用一个子矩阵,用两个相交的子矩阵反而更劣
考虑二维区间dp
记 dp[si][sj][ti][tj] 表示摧毁左上坐标为 \((s_i, s_j)\) 以及右下坐标为 \((t_i-1, t_j-1)\) 的子矩阵中的所有障碍物的最小代价
代码实现
#include<bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
inline void chmin(int& x, int y) { if (x > y) x = y; }
int dp[55][55][55][55];
int main() {
int n;
cin >> n;
vector<string> s(n);
rep(i, n) cin >> s[i];
rep(ti, n+1)rep(si, ti)rep(tj, n+1)rep(sj, tj) {
dp[si][sj][ti][tj] = max(ti-si, tj-sj);
}
rep(i, n)rep(j, n) if (s[i][j] == '.') {
dp[i][j][i+1][j+1] = 0;
}
for (int wi = 1; wi <= n; ++wi) {
for (int wj = 1; wj <= n; ++wj) {
rep(si, n)rep(sj, n) {
int ti = si+wi, tj = sj+wj;
if (ti > n) break;
if (tj > n) break;
for (int k = si+1; k < ti; ++k) {
int now = dp[si][sj][k][tj];
now += dp[k][sj][ti][tj];
chmin(dp[si][sj][ti][tj], now);
}
for (int k = sj+1; k < tj; ++k) {
int now = dp[si][sj][ti][k];
now += dp[si][k][ti][tj];
chmin(dp[si][sj][ti][tj], now);
}
}
}
}
cout << dp[0][0][n][n] << '\n';
return 0;
}
ABC233H. Manhattan Christmas Tree
整体二分
先将坐标系顺时针旋转45°,得到切比雪夫距离,接下来就是经典的二维数点问题了
代码实现
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using P = pair<int, int>;
const int M = 100005;
const int MX = M*2;
int main() {
int n;
cin >> n;
vector<vector<int>> ps(MX);
rep(i, n) {
int x, y;
cin >> x >> y;
ps[x+y].push_back(x-y+M);
}
int q;
cin >> q;
vector<int> a(q), b(q), k(q);
rep(i, q) {
int x, y;
cin >> x >> y >> k[i];
a[i] = x+y;
b[i] = x-y+M;
}
vector<int> wa(q, -1), ac(q, MX);
rep(ti, 18) {
vector<int> num(q), wj(q);
vector<vector<int>> qs(MX);
rep(i, q) {
wj[i] = (wa[i]+ac[i])/2;
int lx = a[i]-wj[i], rx = a[i]+wj[i]+1;
lx = max(lx, 0);
rx = min(rx, MX-1);
qs[lx].push_back(i);
qs[rx].push_back(q+i);
}
fenwick_tree<int> d(MX);
rep(x, MX) {
for (int qi : qs[x]) {
int i = qi%q;
int sign = qi < q ? -1 : 1;
int ly = b[i]-wj[i], ry = b[i]+wj[i]+1;
ly = max(ly, 0);
ry = min(ry, MX);
num[i] += d.sum(ly, ry)*sign;
}
for (int y : ps[x]) d.add(y, 1);
}
rep(i, q) {
if (num[i] >= k[i]) ac[i] = wj[i];
else wa[i] = wj[i];
}
}
rep(i, q) cout << ac[i] << '\n';
return 0;
}
ABC235G. Gardens
先考虑条件1,就是个简单的容斥,见 盒子与球
再结合条件2,假设恰有 \(M\) 个花园对条件1没有限制,方案数就是
那么最终答案就是
这样时间复杂度是 \(O(N^2)\)
考虑对组合数的前缀和进行加速
记 \(f_a(M) = \sum\limits_{i=0}^a {}_MC_i\)
有递推公式:\(f_a(M+1) = 2f_a(M) - {}_MC_{a}\)
那么我们就可以 \(O(N)\) 预处理出 \(f_a(0) \sim f_a(N)\) 了
代码实现
#include <bits/stdc++.h>
#include <atcoder/all>
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using mint = modint998244353;
struct modinv {
int n; vector<mint> d;
modinv(): n(2), d({0,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(-d[mint::mod()%n]*(mint::mod()/n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} invs;
struct modfact {
int n; vector<mint> d;
modfact(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*n), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} facts;
struct modfactinv {
int n; vector<mint> d;
modfactinv(): n(2), d({1,1}) {}
mint operator()(int i) {
while (n <= i) d.push_back(d.back()*invs(n)), ++n;
return d[i];
}
mint operator[](int i) const { return d[i];}
} ifacts;
mint comb(int n, int k) {
if (n < k || k < 0) return 0;
return facts(n)*ifacts(k)*ifacts(n-k);
}
int main() {
int n;
cin >> n;
vector<int> a(3);
rep(i, 3) cin >> a[i];
vector f(3, vector<mint>(n+1));
rep(i, 3) {
f[i][0] = 1;
rep(j, n) {
f[i][j+1] = f[i][j]*2;
if (j >= a[i]) f[i][j+1] -= comb(j, a[i]);
}
}
mint ans;
rep(j, n+1) {
mint now = 1;
rep(i, 3) now *= f[i][j];
now *= comb(n, j);
ans = now-ans;
}
cout << ans.val() << '\n';
return 0;
}
ABC249F. Ignore Operations
考虑枚举最后一个操作 \(1\),那么前面的操作不管是啥样都无所谓了,我们只需考虑后面的操作,显然应该将后面的所有操作 \(1\) 都跳过,为了使得最终的结果最大,所以应该尽可能跳过操作 \(2\) 中 \(y < 0\) 的操作。可以用小根堆来维护所有 \(y < 0\) 的操作 \(2\),如果当前堆的大小超过剩下的 \(k\),就弹出堆中的最大值。 对于枚举最后一个操作 \(1\) 可以倒着枚举所有操作
代码实现
#include <bits/stdc++.h>
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
int main() {
int n, k;
cin >> n >> k;
vector<int> t(n), y(n);
rep(i, n) cin >> t[i] >> y[i];
ll ans = -1e18;
ll sum = 0;
priority_queue<int> q;
for (int i = n-1; i >= 0; --i) {
if (k < 0) break;
if (t[i] == 1) {
ans = max(ans, y[i]+sum);
k--;
if (q.size() > k) {
sum += q.top(); q.pop();
}
}
else {
if (y[i] >= 0) sum += y[i];
else {
q.push(y[i]);
if (q.size() > k) {
sum += q.top(); q.pop();
}
}
}
}
if (k >= 0) ans = max(ans, sum);
cout << ans << '\n';
return 0;
}
ABC239Ex. Dice Product 2
记 dp[i] 表示由 \(M\) 通过除以若干个整数 \(x\) 变成 \(i\) 的期望次数
转移方程:\(dp[i] = 1 + \sum\limits_{j=1}^n dp[\lfloor\frac{i}{j}\rfloor] \Leftrightarrow dp[i] = \frac{N}{N-1}(1 + \sum\limits_{j=2}^n dp[\lfloor\frac{i}{j}\rfloor])\)
时间复杂度为 \(\mathcal{O}(NM)\)
注意到和 \(\lfloor\frac{i}{j}\rfloor\) 一样的部分可以用整除分块来优化
用记忆化搜索实现,复杂度同杜教筛,为 \(O(m^{\frac{3}{4}})\)
代码实现
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using mint = modint1000000007;
int main() {
int n, m;
cin >> n >> m;
mint inv_n1 = mint(n-1).inv();
mint cost = mint(n)/(n-1);
unordered_map<int, mint> dp;
auto f = [&](auto& f, int x) -> mint {
if (x == 0) return 0;
if (dp.count(x)) return dp[x];
mint res;
for (int i = n; i > 1;) {
int a = x/i;
int ni = x/(a+1);
res += f(f, a)*(i-ni);
i = ni;
}
res *= inv_n1; res += cost;
return dp[x] = res;
};
mint ans = f(f, m);
cout << ans.val() << '\n';
return 0;
}
ABC265G. 012 Inversion
延迟线段树
每个点需要维护以下信息:
- \(0/1/2\) 的个数
- 有序对 \((0, 0)\), \((0, 1)\), \((0, 2)\),\((1, 0)\),\((1, 1)\),\((1, 2)\),\((2, 0)\),\((2, 1)\),\((2, 2)\) 的个数
对于操作二其实就是延迟线段树里的映射 \(F\)
代码实现
#include <bits/stdc++.h>
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#endif
#define rep(i, n) for (int i = 0; i < (n); ++i)
using namespace std;
using ll = long long;
struct S {
array<int, 3> c;
array<array<ll, 3>, 3> d;
S() {
fill(c.begin(), c.end(), 0);
rep(i, 3)rep(j, 3) d[i][j] = 0;
}
};
S op(S a, S b) {
rep(i, 3)rep(j, 3) {
a.d[i][j] += b.d[i][j];
a.d[i][j] += (ll)a.c[i]*b.c[j];
}
rep(i, 3) a.c[i] += b.c[i];
return a;
}
S e() { return S(); }
struct F {
array<int, 3> a;
F(): a({0, 1, 2}) {}
};
S mapping(F f, S x) {
S res;
rep(i, 3)rep(j, 3) {
res.d[f.a[i]][f.a[j]] += x.d[i][j];
}
rep(i, 3) res.c[f.a[i]] += x.c[i];
return res;
}
F comp(F f2, F f1) {
rep(i, 3) f1.a[i] = f2.a[f1.a[i]];
return f1;
}
F id() { return F(); }
int main() {
cin.tie(nullptr) -> sync_with_stdio(false);
int n, q;
cin >> n >> q;
vector<int> a(n);
rep(i, n) cin >> a[i];
lazy_segtree<S, op, e, F, mapping, comp, id> t(n);
rep(i, n) {
S s;
s.c[a[i]] = 1;
t.set(i, s);
}
rep(qi, q) {
int type, l, r;
cin >> type >> l >> r;
--l;
if (type == 1) {
S s = t.prod(l, r);
ll ans = s.d[1][0] + s.d[2][0] + s.d[2][1];
cout << ans << '\n';
}
else {
F f;
rep(i, 3) cin >> f.a[i];
t.apply(l, r, f);
}
}
return 0;
}
浙公网安备 33010602011771号