P14461 题解

消一消元:

\[\begin{aligned} F_i &= G_{i - 1} + G'_{i - 1} \\ &= F_{i - 2} - F'_{i - 2} + F'_{i - 2} - F''_{i - 2} \\ &= F_{i - 2} - F''_{i - 2} \end{aligned} \]

类似的:

\[G_i = G_{i - 2} - G''_{i - 2} \]

那么只需要考虑操作偶数次的情况,于是设 \(2 \mid n\)。把 \(F_i\) 的递推式用微分算子写出:

\[F_i = \left( 1 - \dfrac{\mathrm{d}^2}{\mathrm{d} x^2} \right) F_{i - 2} \]

于是:

\[\begin{aligned} F_i &= \left( 1 - \dfrac{\mathrm{d}^2}{\mathrm{d} x^2} \right)^{n / 2} F_0 \\ &= \sum_{i = 0}^{n / 2} (-1)^i \dbinom{n / 2}{i} \dfrac{\mathrm{d}^{2i} F_0}{\mathrm{d} x^{2i}} \\ \end{aligned} \]

注意到 \(2i > m\) 时求出的导为 \(0\),于是上界可以缩到 \(\lfloor m / 2 \rfloor\)

posted @ 2025-11-09 18:51  David9006  阅读(3)  评论(0)    收藏  举报