【bzoj3813】奇数国 线段树
题目描述
给出一个长度为n的序列,每个数都可以由前60个质数的乘积表示,初始每个数都是3。支持两种操作:(1)修改一个数 (2)查询一段区间内所有数的乘积的欧拉函数值模19961993。
输入
第一行一个整数x表示领袖清点和变动存款的总次数。
接下来x行,每行3个整数ai,bi,ci。ai为0时表示该条记录是清点计划,领袖会清点bi到ci的银行存款,你需要对该条记录计算出GFS想要的答案。ai为1时表示该条记录是存款变动,你要把银行bi的存款改为ci,不需要对该记录进行计算。
输出
输出若干行,每行一个数,表示那些年的答案。
样例输入
6
013
115
013
117
013
023
样例输出
18
24
36
6
题解
线段树
考虑到$\varphi$的求法:$\varphi(n)=n\sum\limits_{prime(p)\& p|n}\frac{p-1}p$。所以需要维护的就是区间乘积和区间所有出现过的质数。
由于所有数都可以由前60个质数表示,因此可以维护乘积中每个质数是否出现。使用二进制位运算即可。
最后对于每个质因子计算并求出答案。
时间复杂度$O(60m+m\log n)$。
#include <cstdio>
#define N 100010
#define mod 19961993
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
typedef long long ll;
const int n = 100000;
int p[60] , inv[60];
struct data
{
ll w , v;
data() {}
data(int x)
{
int i;
w = x , v = 0;
for(i = 0 ; i < 60 ; i ++ )
if(x % p[i] == 0)
v |= (1ll << i);
}
data operator+(const data &a)const
{
data ans;
ans.w = w * a.w % mod , ans.v = v | a.v;
return ans;
}
}a[N << 2];
inline void pushup(int x)
{
a[x] = a[x << 1] + a[x << 1 | 1];
}
void build(int l , int r , int x)
{
if(l == r)
{
a[x] = data(3);
return;
}
int mid = (l + r) >> 1;
build(lson) , build(rson);
pushup(x);
}
void update(int p , int v , int l , int r , int x)
{
if(l == r)
{
a[x] = data(v);
return;
}
int mid = (l + r) >> 1;
if(p <= mid) update(p , v , lson);
else update(p , v , rson);
pushup(x);
}
data query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e) return a[x];
int mid = (l + r) >> 1;
if(e <= mid) return query(b , e , lson);
else if(b > mid) return query(b , e , rson);
else return query(b , e , lson) + query(b , e , rson);
}
inline ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
inline bool judge(ll x)
{
ll i;
for(i = 2 ; i * i <= x ; i ++ )
if(x % i == 0)
return 0;
return 1;
}
inline void init()
{
ll i;
int tot = 0;
for(i = 2 ; tot < 60 ; i ++ )
if(judge(i))
p[tot] = i , inv[tot] = pow(p[tot] , mod - 2) , tot ++ ;
}
int main()
{
init();
int m , i , x , y , z;
data t;
scanf("%d" , &m);
build(1 , n , 1);
while(m -- )
{
scanf("%d%d%d" , &x , &y , &z);
if(x) update(y , z , 1 , n , 1);
else
{
t = query(y , z , 1 , n , 1);
for(i = 0 ; i < 60 ; i ++ )
if(t.v & (1ll << i))
t.w = t.w * (p[i] - 1) % mod * inv[i] % mod;
printf("%lld\n" , t.w);
}
}
return 0;
}
浙公网安备 33010602011771号