小作业 8

\(x_1,x_2\) 是方程 \(x-\ln x=a\) 的两个不同的根,求证:\(2x_1+x_2>e\)


\(f(x)=x-\ln x\)

\(f'(x)=1-\dfrac{1}{x}\)\(f'(1)=0\)\(\displaystyle\lim_{x\to 0^{+}}f(x)=+\infty\)\(\displaystyle\lim_{x\to +\infty}f(x)=+\infty\),所以 \(f(x)\) 先减后增,在 \(x=1\) 处取得最小值。

不妨设 \(x_1<x_2\),有 \(x_1-\ln x_1=x_2-\ln x_2\)

\(\dfrac{x_2}{x_1}=t\),则 \(t>1\)

\(x_2-x_1=\ln x_2-\ln x_1\)\(\dfrac{e^{x_2}}{e^{x_1}}=\dfrac{x_2}{x_1}=t\)\(\dfrac{e^{tx_1}}{e^{x_1}}=t\)\(tx_1-x_1=\ln t\)\(x_1=\dfrac{\ln t}{t-1}\)\(x_2=\dfrac{t\ln t}{t-1}\)

即证 \(\forall t>1\),有 \(\dfrac{2\ln t+t\ln t}{t-1}>e\)

\(g(t)=(t+2)\ln t-et+e\),即证 \(\forall t>1\)\(g(t)>0\)

根据帕德逼近,\(\forall t>1,\ln t\ge \dfrac{3t^2-3}{t^2+4t+1}\)

所以 \(\forall t>1,g(t)\ge\dfrac{(t+2)(3t^2-3)}{t^2+4t+1}-et+e=\dfrac{3(t+2)(t+1)(t-1)-e(t-1)(t^2+4t+1)}{t^2+4t+1}\)

\(h(t)=3(t+2)(t+1)-e(t^2+4t+1)=(3-e)t^2+(9-4e)t+6-e\)

\(\Delta={(9-4e)}^2-4(3-e)(6-e)>0\)

所以 \(h(t)>0\),即 \(g(t)>0\),原命题得证。

posted @ 2025-08-29 00:20  Fido_Puppy  阅读(7)  评论(0)    收藏  举报