小作业 2(飘带放缩)

证明:当 \(n>0\) 时,满足 \(\displaystyle\frac{e}{{\left(1+\frac{1}{n}\right)}^n}<1+\frac{1}{2n}\)

即证 \(n\ln\left(1+\dfrac{1}{n}\right)+\ln\left(1+\dfrac{1}{2n}\right)>1\)

使用飘带放缩,当 \(x\ge 1\) 时有 \(\ln x\ge\dfrac{2(x-1)}{x+1}\)

\[n\ln\left(1+\dfrac{1}{n}\right)+\ln\left(1+\dfrac{1}{2n}\right)\ge n\frac{\frac2n}{\frac1n+2}+\frac{\frac{2}{2n}}{\frac{1}{2n}+2}=\frac{2n}{2n+1}+\frac{2}{4n+1} \]

需要证明 \(n>0\) 时,\(\dfrac{2n}{2n+1}+\dfrac{2}{4n+1}>1\)

\[\frac{2n}{2n+1}+\frac{2}{4n+1}=1+\frac{2}{4n+1}-\frac{1}{2n+1} \]

即证 \(n>0\) 时,\(\dfrac{2}{4n+1}-\dfrac{1}{2n+1}>0\)

\[\frac{2}{4n+1}-\frac{1}{2n+1}=\frac{1}{(4n+1)(2n+1)}>0 \]

原命题得证。

顺便证明了 \(\displaystyle\lim_{n\to+\infty}{\left(1+\frac{1}{n}\right)}^n=e\)

posted @ 2025-07-21 21:05  Fido_Puppy  阅读(23)  评论(0)    收藏  举报