Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,LambertW)

 

0.1Bearbeiten
{\displaystyle \int _{0}^{\infty }W\left({\frac {1}{x^{2}}}\right)dx={\sqrt {2\pi }}}{\displaystyle \int _{0}^{\infty }W\left({\frac {1}{x^{2}}}\right)dx={\sqrt {2\pi }}}

 

 
0.2Bearbeiten
{\displaystyle \int _{0}^{\infty }{\frac {W(x)}{x\,{\sqrt {x}}}}\,dx=2\cdot {\sqrt {2\pi }}}{\displaystyle \int _{0}^{\infty }{\frac {W(x)}{x\,{\sqrt {x}}}}\,dx=2\cdot {\sqrt {2\pi }}}

 

 
1.1Bearbeiten
{\displaystyle \int _{0}^{\infty }\left[W\left({\frac {1}{x^{2}}}\right)\right]^{\alpha }dx=\alpha \cdot 2^{\alpha -1/2}\cdot \Gamma \left(\alpha -{\frac {1}{2}}\right)\qquad {\text{Re}}(\alpha )>{\frac {1}{2}}}{\displaystyle \int _{0}^{\infty }\left[W\left({\frac {1}{x^{2}}}\right)\right]^{\alpha }dx=\alpha \cdot 2^{\alpha -1/2}\cdot \Gamma \left(\alpha -{\frac {1}{2}}\right)\qquad {\text{Re}}(\alpha )>{\frac {1}{2}}}

posted on 2021-05-05 02:34  Eufisky  阅读(44)  评论(0)    收藏  举报

导航