CMC蒲和平2.1
例5
设 \(f(x)\) 在 \((-\delta, \delta)\) 上有定义,对任何 \(x, y\in (-\delta, \delta)\),恒有 \(f(x + y) = \frac{f(x) + f(y)}{1 - f(x) f(y)}\). 又 \(f(x)\) 在点 \(x=0\) 处可导,且 \(f'(0) = 1\),证明 \(f(x)\) 在 \((-\delta, \delta)\) 内处处可导,并求出函数的表达式。
solution
首先有 \(f(0) = 0\),然后考虑利用 \(f'(0) = 1\) 的条件,凑出极限求导数的结构。
\(f(x + \Delta x) = \frac{f(x) + f(\Delta x)}{1 - f(x)f(\Delta x)} \Rightarrow \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{f(\Delta x) - f(x)[f(\Delta x)]^2}{(1 - f(x)f(\Delta x))\Delta x} = \frac{f(\Delta x)}{\Delta x} \frac{1 + f^2(x)}{1 - f(x)f(\Delta x)}\).
\(\Delta x\rightarrow 0 \Rightarrow f'(x) = f'(0)(1 + f^2(x)) \Rightarrow \frac{df}{dx} = 1 + f^2 \Rightarrow f = \tan x\).
例8
设 \(a_1, a_2, \cdots , a_n\) 为常数,且
\[\left|\sum\limits_{k = 1} ^ n a_k \sin kx\right| \le |\sin x|,\left|\sum\limits_{j = 1} ^ n a_{n - j + 1} \sin jx\right| \le |\sin x| \]证明 \(\left|\sum\limits_{k = 1} ^ n a_k\right| \le \frac{2}{n + 1}\).
proof
考虑如何得到目标式,发现对于每一个 \(a_k\),不等式中两个式子的 \(\sin kx\) 和 \(\sin jx\) 中的 \(j + k = n + 1\),为常数。
所以设 \(F(x) = \sum\limits_{k = 1} ^ n a_k\sin kx\),\(G(x) = \sum\limits_{k = 1} ^ n a_k \sin(n - k + 1)x\),有 \(H(x) = F'(x) + G'(x) = (n + 1)\sum\limits_{k = 1} ^ n a_k \cos kx\).
\(H(0) = (n + 1)\sum\limits_{k = 1} ^ n a_k = F'(0) + G'(0) = \lim\limits_{x\rightarrow 0} \frac{F(x) - F(0)}{x} + \frac{G(x) - G(0)}{x} \le \lim\limits_{x\rightarrow 0} |\frac{F(x)}{x}| + |\frac{G(x)}{x}| \le 2 \lim\limits_{x\rightarrow 0} |\frac{\sin x}{x}| = 2\).
所以得证。
例12
设 \(f(x) = \sqrt{\dfrac{x ^ x\sqrt{2x - 1}}{e ^ {\frac{1}{x}}}} + \arctan \dfrac{1 - x^2}{\sqrt{xe ^ x}}\),求 \(f'(1)\).
solution
公式:\(\frac{d}{dx} \ln f(x) = \frac{f'(x)}{f(x)}\).
左边一项设为 \(u\) 可以先取对数:\(\ln u = \frac{1}{2}(x\ln x + \frac{1}{2}\ln(2x - 1) - \frac{1}{x})\),\((\ln u)' = \frac{1}{2}(1 + \ln x + \frac{1}{2x - 1} + \frac{1}{x ^ 2})\).
解得 \(u\vert_{x = 1} = \frac{1}{\sqrt{e}}, \frac{u'}{u}\vert_{x = 1} = \frac{3}{2} \Rightarrow u'\vert_{x = 1} = \frac{3}{2\sqrt {e}}\).
右边移向设为 \(v\),注意到 \(v\vert_{x = 1} = 0\),考虑导数定义:
\(v'\vert_{x = 1} = \lim\limits_{x\rightarrow 1} \dfrac{\frac{1-x^2}{\sqrt{xe ^ x}}}{x - 1} = -\frac{2}{\sqrt e}\),加起来就是答案。
例18
设 \(y = x\ln (1 - x ^ 2) + \sin x\ln\frac{1 - x}{1 + x}\),求 \(y ^ {(2023)}\vert_{x = 0}\).
solution
第二项是偶函数,求奇数次导数是奇函数,所以结果为 \(0\),所以只需要求 \((x\ln (1 - x ^ 2)) ^ {(2023)}\vert_{x = 0}\).
设 \(u = x\ln (1 - x ^ 2) = x\ln (1 - x) + x\ln (1 + x)\),\(u' = \ln(1 - x) + \ln (1 + x) + \frac{x}{1 + x} + \frac{x}{x - 1}\).
\(u ^ {(2023)} = \left(\frac{1}{x - 1} + \frac{1}{x + 1}\right) ^ {(2021)} + \left(2 + \frac{1}{x - 1}- \frac{1}{x + 1}\right) ^ {(2022)}\).
$ = (-1) ^ {2021}(2021)!(\frac{1}{(x - 1) ^ {2022}} + \frac{1}{(x + 1) ^ {2022}}) + (-1) ^ {2022} (2022)!(\frac{1}{(x - 1) ^ {2023}} - \frac{1}{(x + 1) ^ {2023}}) = -2\times(2021! + 2022!)$.
例20
设 \(y = e ^ {ax}\sin bx\)(\(a, b\) 为非零常数),求 \(y ^ {(n)}\),
solution
找规律。
\(y' = e ^ {ax}(a\sin bx + b\cos bx) = \sqrt{a ^ 2 + b ^ 2}e ^ {ax} \sin (bx + \varphi)\),\(\tan \varphi = \frac{b}{a}\).
\(y'' = (\sqrt{a ^ 2 + b ^ 2}) ^ 2 e ^ {ax}\sin (bx + 2\varphi)\).
归纳法易证 \(y ^ {(n)} = \left(\sqrt{a ^ 2 + b ^ 2}\right) ^ n e ^ {ax}\sin(bx + n\varphi)\).
例21
设 \(P(x) = \frac{d ^ n}{dx ^n}(1 - x ^ m) ^ n\),其中 \(m, n\) 为正整数,求 \(P(1)\) 的值。
solution
首先观察式子,发现不求导时函数值为 \(0\),考虑把这些因子提取出来,最后使用莱布尼茨公式。
因式分解有 \((1 - x ^ m) ^ n = (1 - x) ^ n (1 + x + x ^ 2 + \cdots + x ^ {m - 1}) ^ n\),所以所求即为:
注意到求和内部第二项只有 \(k = n\) 时有值,所以 \(P(1) = (-1) ^ n n! m ^ n\).
例22
设 \(y = \frac{1}{\sqrt{1 - x ^ 2}}\arcsin x\),求 \(y ^ {(n)}(0)\).
solution
注意到 \(\arcsin x\) 很难处理,将其分离到一边,然后求岛即可。
移项得:\(\sqrt{1 - x ^ 2} y = \arcsin x\),将两边进行 \(\frac{d}{dx}\) 运算,得到 \(\frac{-x}{\sqrt{1 - x ^ 2}} y + \sqrt{1 - x ^ 2}y' = \frac{1}{\sqrt{1 - x ^ 2}}\),即 \(-xy + (1 - x ^ 2)y' = 1\),整理得到 \((1 - x ^ 2)y' - xy - 1 = 0\)
然后对该式子求 \(\frac{d ^ n}{dx ^ n}\),需要用到莱布尼兹公式:
\(\frac{d ^ n}{dx ^ n} (1 - x ^ 2) y' = \sum\limits_{k = 0} ^ n{n\choose k} (1 - x ^ 2) ^ {(k)}\cdot y ^ {(n - k + 1)} = (1 - x ^ 2) y ^ {(n + 1)} - 2nxy ^ {(n)} - n(n - 1)y ^ {(n - 1)}\).
\(\frac{d ^ n}{dx ^ n} xy = \sum\limits_{k = 0} ^ n {n\choose k} y ^ {(k)} x ^ {(n - k)} = xy ^ {(n)} + ny ^ {(n - 1)}\).
令 \(x = 0\) 有:\(y ^ {(n + 1)}(0) = n ^ 2y ^ {(n - 1)}(0)\).
算 \(y(0) = 0, y'(0) = 1\),所以 \(2\mid n\) 时 \(y ^ {(n)} = 0\),\(2 \not\mid n\) 时 \(y ^ {(n)} = [(n - 1)!!] ^ 2\).
例23
设 \(f(x) = \frac{x + 2}{x ^ 2 - 2x + 2}\),证明 \(f ^ {(n)}(0) = n!(\frac{\sqrt{2}}{2}) ^ n \sqrt 5 \sin(\frac{n\pi}{4} + \varphi_0) (n = 0, 1, 2, \cdots)\). 其中 \(\cos \varphi_0 = \frac{2}{\sqrt 5}, 0 < \varphi_0 < \frac{\pi}{2}\).
solution
考虑对原函数进行级数展开,而级数展开需要形如 \(\frac{1}{1 - x}\) 的形式,所以需要将分母进行因式分解。
先求解 \(x ^ 2 - 2x + 2 = 0 \Rightarrow x_1 = 1 + i, x_2 = 1 - i\).
待定系数:\(\frac{x + 2}{x ^ 2 - 2x + 2} = \frac{A}{x - x_1} + \frac{B}{x - x_2}\),解得 \(A = \frac{1 - 3i}{2}, B = \frac{1 + 3i}{2}\).
所以 \(f(x) = \frac{A}{-x_1}\frac{1}{1 - \frac{x}{x_1}} + \frac{B}{-x_2}\frac{1}{1 - \frac{x}{x_2}} = \sum\limits_{n = 0} ^ {\infty}\frac{A}{-x_1} (\frac{x}{x_1}) ^ n + \frac{B}{-x_2} (\frac{x}{x_2}) ^ n\).
根据麦克劳林级数,\(\frac{f^{(n)}(0)}{n!} = \frac{A}{-x_1 ^ {n + 1}} + \frac{B}{-x_2 ^ {n + 1}}\).
同理:
所以有:
所以原命题得证。
习题2
设 \(f(x)\) 在 \(x = 1\) 处可导,且 \(f(xy) = yf(x) + xf(y),\forall x, y\in (0, +\infty)\),证明 \(f(x)\) 在 \((0, +\infty)\) 内可导,且 \(f'(x) = \frac{f(x)}{x} + f'(1)\).
solution(2025.8.29)
求导数,可以制造一个增量,令 \(y = (1 + \frac{\Delta x}{x}) \Rightarrow f(x + \Delta x) = (1 + \frac{\Delta x}{x}) f(x) + x f(1 + \frac{\Delta x}{x})\).
可能 \(f(1)\) 会用到,先求一下,易得 \(f(1) = 0\).
整理一下式子:
两边对 \(\Delta x\rightarrow 0\) 取极限,即可得到目标式。
习题3
设 \(f(x)\) 是可导函数,\(f(\frac{\pi}{2}) = 1\),且满足 \(\lim\limits_{n\rightarrow \infty} \left(\dfrac{f(x + \frac{1}{n})}{f(x)}\right) ^ n = e ^ {\cot x}\),求 \(f(x)\).
solution(2025.8.29)
\(\lim\limits_{n\rightarrow \infty} \left(\dfrac{f(x + \frac{1}{n})}{f(x)}\right) ^ n = \lim\limits_{n\rightarrow \infty} \exp\{n\ln\left(\frac{f(x + \frac{1}{n})}{f(x)}\right)\} = \lim\limits_{n\rightarrow \infty} \exp\{\frac{1}{f(x)} \frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}}\} = e ^ {\frac{f'(x)}{f(x)}}\).
\(\Rightarrow \cot x = \frac{f'}{f} \Rightarrow f' - f\cot x = 0 \Rightarrow f = C\sin x\),又 \(f(\frac{\pi}{2}) = 1\),得 \(f(x) = \sin x\).
习题15
设 \(y = y(x)\) 是由方程组 \(\begin{cases} x = 3t^2 + 2t + 3 \\ e ^ t\sin t - y + 1 = 0\end{cases}\) 确定的隐函数,求 \(\frac{d ^ 2 y}{d x ^ 2}\vert_{t = 0}\).
solution(2025.8.29)
这里好求的是 \(x, y\) 关于 \(t\) 的导数,考虑将所求转化为那些导数。
然后直接吃就好了,答案是 \(\frac{2e^2 -3e}{4}\).
习题23
设 \(f(x) = \arctan\frac{1 - x}{1 + x}\),求 \(f^{(n)}(0)\).
solution(2025.8.29)
设 \(y = \arctan \frac{1-x}{1+x}\Rightarrow y'= \frac{-1}{x^2 + 1} \Rightarrow (x ^ 2 + 1)y' = -1\).
对两边进行 \(\frac{d^n}{dx^n}\) 运算,\((\frac{d^n}{dx^n} x^2 y') + y ^ {(n + 1)} = 0\).
\(\frac{d^n}{dx^n}x^2y' = \sum\limits_{k = 0} ^ n {n\choose k} (x ^ 2) ^ {(k)} y ^ {(n - k + 1)} \Rightarrow \frac{d^n}{dx^n}x^2y' = x^2 y^{(n + 1)} + 2xn y ^ {(n)} + n(n - 1)y ^ {(n - 1)}\).
取 \(x = 0\),得到 \(y ^ {(n + 1)} = -n(n-1)y ^ {(n - 1)}\),根据初值,可以知道答案 \(2\mid n\) 时 \(f^{(n)}(0) = 0\),\(2\not\mid n\) 时 \(f^{(n)}(0) = (-1) ^ {\frac{n + 1}{2}}(n - 1)!\).
习题24
设 \(f(x) = x^2\ln(x + \sqrt{1 + x^2})\),求 \(f ^ {(n)}(0)\).
链接,直接级数展开即可

浙公网安备 33010602011771号