CMC蒲和平2.1

例5

\(f(x)\)\((-\delta, \delta)\) 上有定义,对任何 \(x, y\in (-\delta, \delta)\),恒有 \(f(x + y) = \frac{f(x) + f(y)}{1 - f(x) f(y)}\). 又 \(f(x)\) 在点 \(x=0\) 处可导,且 \(f'(0) = 1\),证明 \(f(x)\)\((-\delta, \delta)\) 内处处可导,并求出函数的表达式。

solution

首先有 \(f(0) = 0\),然后考虑利用 \(f'(0) = 1\) 的条件,凑出极限求导数的结构。

\(f(x + \Delta x) = \frac{f(x) + f(\Delta x)}{1 - f(x)f(\Delta x)} \Rightarrow \frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{f(\Delta x) - f(x)[f(\Delta x)]^2}{(1 - f(x)f(\Delta x))\Delta x} = \frac{f(\Delta x)}{\Delta x} \frac{1 + f^2(x)}{1 - f(x)f(\Delta x)}\).

\(\Delta x\rightarrow 0 \Rightarrow f'(x) = f'(0)(1 + f^2(x)) \Rightarrow \frac{df}{dx} = 1 + f^2 \Rightarrow f = \tan x\).

例8

\(a_1, a_2, \cdots , a_n\) 为常数,且

\[\left|\sum\limits_{k = 1} ^ n a_k \sin kx\right| \le |\sin x|,\left|\sum\limits_{j = 1} ^ n a_{n - j + 1} \sin jx\right| \le |\sin x| \]

证明 \(\left|\sum\limits_{k = 1} ^ n a_k\right| \le \frac{2}{n + 1}\).

proof

考虑如何得到目标式,发现对于每一个 \(a_k\),不等式中两个式子的 \(\sin kx\)\(\sin jx\) 中的 \(j + k = n + 1\),为常数。

所以设 \(F(x) = \sum\limits_{k = 1} ^ n a_k\sin kx\)\(G(x) = \sum\limits_{k = 1} ^ n a_k \sin(n - k + 1)x\),有 \(H(x) = F'(x) + G'(x) = (n + 1)\sum\limits_{k = 1} ^ n a_k \cos kx\).

\(H(0) = (n + 1)\sum\limits_{k = 1} ^ n a_k = F'(0) + G'(0) = \lim\limits_{x\rightarrow 0} \frac{F(x) - F(0)}{x} + \frac{G(x) - G(0)}{x} \le \lim\limits_{x\rightarrow 0} |\frac{F(x)}{x}| + |\frac{G(x)}{x}| \le 2 \lim\limits_{x\rightarrow 0} |\frac{\sin x}{x}| = 2\).

所以得证。

例12

\(f(x) = \sqrt{\dfrac{x ^ x\sqrt{2x - 1}}{e ^ {\frac{1}{x}}}} + \arctan \dfrac{1 - x^2}{\sqrt{xe ^ x}}\),求 \(f'(1)\).

solution

公式:\(\frac{d}{dx} \ln f(x) = \frac{f'(x)}{f(x)}\).

左边一项设为 \(u\) 可以先取对数:\(\ln u = \frac{1}{2}(x\ln x + \frac{1}{2}\ln(2x - 1) - \frac{1}{x})\)\((\ln u)' = \frac{1}{2}(1 + \ln x + \frac{1}{2x - 1} + \frac{1}{x ^ 2})\).

解得 \(u\vert_{x = 1} = \frac{1}{\sqrt{e}}, \frac{u'}{u}\vert_{x = 1} = \frac{3}{2} \Rightarrow u'\vert_{x = 1} = \frac{3}{2\sqrt {e}}\).

右边移向设为 \(v\),注意到 \(v\vert_{x = 1} = 0\),考虑导数定义:

\(v'\vert_{x = 1} = \lim\limits_{x\rightarrow 1} \dfrac{\frac{1-x^2}{\sqrt{xe ^ x}}}{x - 1} = -\frac{2}{\sqrt e}\),加起来就是答案。

例18

\(y = x\ln (1 - x ^ 2) + \sin x\ln\frac{1 - x}{1 + x}\),求 \(y ^ {(2023)}\vert_{x = 0}\).

solution

第二项是偶函数,求奇数次导数是奇函数,所以结果为 \(0\),所以只需要求 \((x\ln (1 - x ^ 2)) ^ {(2023)}\vert_{x = 0}\).

\(u = x\ln (1 - x ^ 2) = x\ln (1 - x) + x\ln (1 + x)\)\(u' = \ln(1 - x) + \ln (1 + x) + \frac{x}{1 + x} + \frac{x}{x - 1}\).

\(u ^ {(2023)} = \left(\frac{1}{x - 1} + \frac{1}{x + 1}\right) ^ {(2021)} + \left(2 + \frac{1}{x - 1}- \frac{1}{x + 1}\right) ^ {(2022)}\).

$ = (-1) ^ {2021}(2021)!(\frac{1}{(x - 1) ^ {2022}} + \frac{1}{(x + 1) ^ {2022}}) + (-1) ^ {2022} (2022)!(\frac{1}{(x - 1) ^ {2023}} - \frac{1}{(x + 1) ^ {2023}}) = -2\times(2021! + 2022!)$.

例20

\(y = e ^ {ax}\sin bx\)\(a, b\) 为非零常数),求 \(y ^ {(n)}\),

solution

找规律。

\(y' = e ^ {ax}(a\sin bx + b\cos bx) = \sqrt{a ^ 2 + b ^ 2}e ^ {ax} \sin (bx + \varphi)\)\(\tan \varphi = \frac{b}{a}\).

\(y'' = (\sqrt{a ^ 2 + b ^ 2}) ^ 2 e ^ {ax}\sin (bx + 2\varphi)\).

归纳法易证 \(y ^ {(n)} = \left(\sqrt{a ^ 2 + b ^ 2}\right) ^ n e ^ {ax}\sin(bx + n\varphi)\).

例21

\(P(x) = \frac{d ^ n}{dx ^n}(1 - x ^ m) ^ n\),其中 \(m, n\) 为正整数,求 \(P(1)\) 的值。

solution

首先观察式子,发现不求导时函数值为 \(0\),考虑把这些因子提取出来,最后使用莱布尼茨公式。

因式分解有 \((1 - x ^ m) ^ n = (1 - x) ^ n (1 + x + x ^ 2 + \cdots + x ^ {m - 1}) ^ n\),所以所求即为:

\[P(1) = \sum\limits_{k = 0} ^ n {n\choose k} ((1 - x) ^ n) ^ {(k)}\cdot ((1 + x + x ^ 2 + \cdots + x ^ {m - 1}) ^ n) ^ {(n - k)} \]

注意到求和内部第二项只有 \(k = n\) 时有值,所以 \(P(1) = (-1) ^ n n! m ^ n\).

例22

\(y = \frac{1}{\sqrt{1 - x ^ 2}}\arcsin x\),求 \(y ^ {(n)}(0)\).

solution

注意到 \(\arcsin x\) 很难处理,将其分离到一边,然后求岛即可。

移项得:\(\sqrt{1 - x ^ 2} y = \arcsin x\),将两边进行 \(\frac{d}{dx}\) 运算,得到 \(\frac{-x}{\sqrt{1 - x ^ 2}} y + \sqrt{1 - x ^ 2}y' = \frac{1}{\sqrt{1 - x ^ 2}}\),即 \(-xy + (1 - x ^ 2)y' = 1\),整理得到 \((1 - x ^ 2)y' - xy - 1 = 0\)

然后对该式子求 \(\frac{d ^ n}{dx ^ n}\),需要用到莱布尼兹公式:

\(\frac{d ^ n}{dx ^ n} (1 - x ^ 2) y' = \sum\limits_{k = 0} ^ n{n\choose k} (1 - x ^ 2) ^ {(k)}\cdot y ^ {(n - k + 1)} = (1 - x ^ 2) y ^ {(n + 1)} - 2nxy ^ {(n)} - n(n - 1)y ^ {(n - 1)}\).

\(\frac{d ^ n}{dx ^ n} xy = \sum\limits_{k = 0} ^ n {n\choose k} y ^ {(k)} x ^ {(n - k)} = xy ^ {(n)} + ny ^ {(n - 1)}\).

\(x = 0\) 有:\(y ^ {(n + 1)}(0) = n ^ 2y ^ {(n - 1)}(0)\).

\(y(0) = 0, y'(0) = 1\),所以 \(2\mid n\)\(y ^ {(n)} = 0\)\(2 \not\mid n\)\(y ^ {(n)} = [(n - 1)!!] ^ 2\).

例23

\(f(x) = \frac{x + 2}{x ^ 2 - 2x + 2}\),证明 \(f ^ {(n)}(0) = n!(\frac{\sqrt{2}}{2}) ^ n \sqrt 5 \sin(\frac{n\pi}{4} + \varphi_0) (n = 0, 1, 2, \cdots)\). 其中 \(\cos \varphi_0 = \frac{2}{\sqrt 5}, 0 < \varphi_0 < \frac{\pi}{2}\).

solution

考虑对原函数进行级数展开,而级数展开需要形如 \(\frac{1}{1 - x}\) 的形式,所以需要将分母进行因式分解。

先求解 \(x ^ 2 - 2x + 2 = 0 \Rightarrow x_1 = 1 + i, x_2 = 1 - i\).

待定系数:\(\frac{x + 2}{x ^ 2 - 2x + 2} = \frac{A}{x - x_1} + \frac{B}{x - x_2}\),解得 \(A = \frac{1 - 3i}{2}, B = \frac{1 + 3i}{2}\).

所以 \(f(x) = \frac{A}{-x_1}\frac{1}{1 - \frac{x}{x_1}} + \frac{B}{-x_2}\frac{1}{1 - \frac{x}{x_2}} = \sum\limits_{n = 0} ^ {\infty}\frac{A}{-x_1} (\frac{x}{x_1}) ^ n + \frac{B}{-x_2} (\frac{x}{x_2}) ^ n\).

根据麦克劳林级数,\(\frac{f^{(n)}(0)}{n!} = \frac{A}{-x_1 ^ {n + 1}} + \frac{B}{-x_2 ^ {n + 1}}\).

\[-\frac{A}{x_1 ^ {n + 1}} = \frac{3i - 1}{2(1 + i) ^ {n + 1}} = \frac{2i + 1}{2 ^ {n + 1}}(1 - i) ^ n = \frac{\sqrt 5}{{\sqrt{2}} ^ {n}\cdot 2} e ^ {(\varphi_0- \frac{\pi}{4}n)i} \]

同理:

\[-\frac{B}{x_2 ^ {n + 1}} = -\frac{1 + 3i}{2(1 - i) ^ {n + 1}} = \frac{1-2i}{2 ^ {n + 1}}(1 + i) ^ n = \frac{\sqrt 5}{2\cdot \sqrt{2} ^ n} e ^ {(-\varphi_0 + \frac{n\pi}{4})i} \]

所以有:

\[\Re\left[-\frac{A}{x_1 ^ {n + 1}}-\frac{B}{x_2 ^ {n + 1}}\right] = \frac{1}{{\sqrt{2}} ^ {n}}\sqrt{5} \cos (\varphi_0 - \frac{n\pi}{4}) = \frac{1}{{\sqrt{2}} ^ {n}}\sqrt{5} \sin (\varphi_0 + \frac{n\pi}{4}) \]

所以原命题得证。

习题2

\(f(x)\)\(x = 1\) 处可导,且 \(f(xy) = yf(x) + xf(y),\forall x, y\in (0, +\infty)\),证明 \(f(x)\)\((0, +\infty)\) 内可导,且 \(f'(x) = \frac{f(x)}{x} + f'(1)\).

solution(2025.8.29)

求导数,可以制造一个增量,令 \(y = (1 + \frac{\Delta x}{x}) \Rightarrow f(x + \Delta x) = (1 + \frac{\Delta x}{x}) f(x) + x f(1 + \frac{\Delta x}{x})\).

可能 \(f(1)\) 会用到,先求一下,易得 \(f(1) = 0\).

整理一下式子:

\[\frac{f(x + \Delta x) - f(x)}{\Delta x} = \frac{f(x)}{x} + \frac{x}{\Delta x} f\left(1 + \frac{\Delta x}{x}\right) = \frac{f(x)}{x} + \frac{f(1 + \frac{\Delta x}{x}) - f(1)}{ \frac{\Delta x}{x}} \]

两边对 \(\Delta x\rightarrow 0\) 取极限,即可得到目标式。

习题3

\(f(x)\) 是可导函数,\(f(\frac{\pi}{2}) = 1\),且满足 \(\lim\limits_{n\rightarrow \infty} \left(\dfrac{f(x + \frac{1}{n})}{f(x)}\right) ^ n = e ^ {\cot x}\),求 \(f(x)\).

solution(2025.8.29)

\(\lim\limits_{n\rightarrow \infty} \left(\dfrac{f(x + \frac{1}{n})}{f(x)}\right) ^ n = \lim\limits_{n\rightarrow \infty} \exp\{n\ln\left(\frac{f(x + \frac{1}{n})}{f(x)}\right)\} = \lim\limits_{n\rightarrow \infty} \exp\{\frac{1}{f(x)} \frac{f(x + \frac{1}{n}) - f(x)}{\frac{1}{n}}\} = e ^ {\frac{f'(x)}{f(x)}}\).

\(\Rightarrow \cot x = \frac{f'}{f} \Rightarrow f' - f\cot x = 0 \Rightarrow f = C\sin x\),又 \(f(\frac{\pi}{2}) = 1\),得 \(f(x) = \sin x\).

习题15

\(y = y(x)\) 是由方程组 \(\begin{cases} x = 3t^2 + 2t + 3 \\ e ^ t\sin t - y + 1 = 0\end{cases}\) 确定的隐函数,求 \(\frac{d ^ 2 y}{d x ^ 2}\vert_{t = 0}\).

solution(2025.8.29)

这里好求的是 \(x, y\) 关于 \(t\) 的导数,考虑将所求转化为那些导数。

\[\frac{d ^ 2 y}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{d\left(\dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}\right)}{dt} \cdot \frac{dt}{dx} = \frac{\frac{d^2y}{dt^2}\frac{dx}{dt} - \frac{d^2x}{dt^2}\frac{dy}{dt}}{(\frac{dx}{dt}) ^ 3} \]

然后直接吃就好了,答案是 \(\frac{2e^2 -3e}{4}\).

习题23

\(f(x) = \arctan\frac{1 - x}{1 + x}\),求 \(f^{(n)}(0)\).

solution(2025.8.29)

\(y = \arctan \frac{1-x}{1+x}\Rightarrow y'= \frac{-1}{x^2 + 1} \Rightarrow (x ^ 2 + 1)y' = -1\).

对两边进行 \(\frac{d^n}{dx^n}\) 运算,\((\frac{d^n}{dx^n} x^2 y') + y ^ {(n + 1)} = 0\).

\(\frac{d^n}{dx^n}x^2y' = \sum\limits_{k = 0} ^ n {n\choose k} (x ^ 2) ^ {(k)} y ^ {(n - k + 1)} \Rightarrow \frac{d^n}{dx^n}x^2y' = x^2 y^{(n + 1)} + 2xn y ^ {(n)} + n(n - 1)y ^ {(n - 1)}\).

\(x = 0\),得到 \(y ^ {(n + 1)} = -n(n-1)y ^ {(n - 1)}\),根据初值,可以知道答案 \(2\mid n\)\(f^{(n)}(0) = 0\)\(2\not\mid n\)\(f^{(n)}(0) = (-1) ^ {\frac{n + 1}{2}}(n - 1)!\).

习题24

\(f(x) = x^2\ln(x + \sqrt{1 + x^2})\),求 \(f ^ {(n)}(0)\).

链接,直接级数展开即可

posted @ 2025-08-29 14:26  AxDea  阅读(10)  评论(0)    收藏  举报