反三角函数的级数展开
二项级数展开的应用
反正弦函数
\(y = \arcsin x\),先求一阶导 \(y' = \frac{1}{\sqrt{1 - x ^ 2}}\).
对 \(y'\) 进行二项级数展开:
\[y' = (1 - x ^ 2) ^ {-\frac{1}{2}} = \sum\limits_{n = 0} ^ {\infty} {-1/2\choose n} (-1) ^ n x ^ {2n}
\]
根据广义二项式定义,\({-1/2\choose n} = \frac{(-1) ^ n}{4 ^ n} {2n\choose n}\).
所以:
\[y' = \sum\limits_{n = 0} ^ {\infty} \frac{(2n)!}{4 ^ n (n!)^2}x ^ {2n}
\]
两边积分:
\[y = \int_0^x y' dx = \sum\limits_{n = 0} ^ {\infty} \frac{(2n)!}{4 ^ n(n!)^2 (2n + 1)} x ^ {2n + 1}
\]
反余弦函数
这个不用求,直接 \(\arccos x = \frac{\pi}{2} - \arcsin x\) 即可。
反正切函数
\(y = \arctan x\),\(y' = \frac{1}{1 + x^2}\).
\[y' = (1 + x ^ 2) ^ {-1} = \sum\limits_{n = 0} ^ {\infty} {-1\choose n} x ^ {2n}
\]
可以知道 \({-1\choose n} = (-1) ^ n\),所以:
\[y = \int_0^x y'dx = \sum\limits_{n = 0} ^ {\infty} \frac{(-1) ^ n}{2n + 1} x ^ {2n + 1}
\]
反双曲正弦函数
\(y = \mathrm{arcsinh} = \ln (x + \sqrt{1 + x ^ 2})\),\(y' = (1 + x ^ 2) ^ {-\frac{1}{2}}\).
\[y' = \sum\limits_{n = 0} ^ {\infty} {-1/2\choose n} x ^ {2n}
\]
\[y = \int_0^x y' dx = \sum\limits_{n = 0} ^ {\infty} {-1/2\choose n} \frac{x ^ {2n + 1}}{2n + 1} = \sum\limits_{n = 0} ^ {\infty} \frac{(-1) ^ n (2n)!}{(2n + 1)(n!)^2} x ^ {2n + 1}
\]
反双曲余弦函数(应该没有人展开这个
\(y = \mathrm{arccosh} x = \ln(x + \sqrt{x^2 - 1})\),\(y' = (x ^ 2 - 1) ^ {-\frac{1}{2}}\).
设 \(u = x ^ 2\),有 \(y' = u ^ {-\frac{1}{2}}(1 - u ^ {-1}) ^ {-\frac{1}{2}}\).
\[y' = u ^ {-\frac{1}{2}} \sum\limits_{n = 0} ^ {\infty} {-1/2\choose n} (-1) ^ n u ^ {-n} = \sum\limits_{n = 0} ^ {\infty} \frac{(2n)!}{4 ^ n(n!)^2} x ^ {-2n-1}
\]
\[y = \int_0^x y'dx = - \sum\limits_{n = 0} ^ {\infty} \frac{(2n)!}{4 ^ n (n!)^2 (2n)} x ^ {-2n}
\]
感谢
wqy from ECNU

浙公网安备 33010602011771号