裴蜀定理

裴蜀定理

Definition

设d=(a,b)

则存在两个整数x,y,满足:

\[ax+by=d \]

Solution

首先带入下数据(随便两个整数)

例:14 10

不难看出,gcd(14,10)=2

辗转相除法:

(a,b)=(b,a mod b)

\(\cfrac{14}{10}=1...4\)

\(\cfrac{10}4=2...2\)

\(\cfrac42=2...0\)

当(a mod b)=0时,结束,取最后一次的商

Formula

\[b=aq_1+r_1\ \ 0<r_1<|a| \\ a=r_1q_2+r_2\ \ 0<r_2<r_1 \\ r_1=r_2q_3+r_3\ \ 0<r_3<r_2 \\ r_2=r_1q_4+r_4\ \ 0<r_4<r_3 \\ ... \\ r_{k-3}=r_{k-2}q_{k-1}+r_{k-1}\ \ 0<r_{k-1}<r_{k-2} \\ r_{k-2}=r_{k-1}q_{k}+r_{k}\ \ 0<r_{k}<r_{k-1} \\ r_{k-1}=r_{k}q_{k+1} \\\ r_k \ mod\ r_{k-1}\ =\ r_k\ mod\ q_{k+2}\ =\ 0 \]

$\because $ d=(a,b)

\(\therefore\) d满足以下条件:

\[d\mid r_k\ \ d\mid r_{k-1}\ \ d\mid r_{k-2}\ \ ...d\mid r_1 \]

从第k 个式子往前推导,又可以得出:

$\because $ \(r_k\mid r_{k-1}\ \ r_{k}\mid r_{k-2}\ \ r_{k}\mid r_{k-3}\)

\(\therefore\) \(r_{k}\mid a\ \ r_k\mid b\)

\(\because\) (a,b)=d,\(\therefore\) \(r_k\leqslant\) d

\(\because\) (a,b)=\(r_k\)\(\therefore\) \(r_k=d\)

解一下第k个式子:

\[r_{k-2}=r_{k-1}q_{k}+r_{k} \\ r_{k-2}=r_{k-1}q_{k}+d \\ -d=r_{k+2}q_k-r_{k+2} \\ d=r_{k+2}-r_{k+2}q_k \]

可以很轻易地得出

\[d=r_{k+2}-r_{k+2}q_k \]

解一下第\(k-1\)个式子:

\[r_{k-3}=r_{k-2}q_{k-1}+r_{k-1} \\ -r_{k-1}=r_{k-2}q_{k-1}-r_{k-3} \\ r_{k-1}=r_{k-3}-r_{k-2}q_{k-1} \]

\(\because\) 假设\(a\mid b\)\(a \mid c\) ,则对于任意整数x,y,都有\(a \mid bx\ +\ cy\) (线性组合)

\(\therefore\) d可表示为\(r_{k-2}\)\(r_{k-3}\) 的线性组合

\(\therefore\) \(d=ax+by\)

得证

posted @ 2024-07-26 21:36  Atserckcn  阅读(46)  评论(0)    收藏  举报