强连通分量

强连通分量

强连通定义

有向图 \(G\) 的强连通是指 \(G\) 中任意两个节点都可以直接或间接到达。

下方两幅图都是强连通。一个特殊一点,任意两点都可以直接到达;一个则是最常见的强连通图。

  • 特殊强连通图,任意两点都可以直接到达

  • 常见的强连通图,即一个环

强连通分量

强连通分量,简称 \(SCC\),是在一个有向图极大的强连通子图。

重点:SCC不一定是最大的!

  • 图中加粗的点组成的子图即为此图的强连通分量

dfs 生成树的边

dfs 遍历过程就不多说了,这是图论基本能力。

dfs 深搜后,会出现四种不同情况的边,如下:

  • 树边:由 dfs 自然搜索到的边,组成一棵树(不一定是最小/大生成树)。
  • 返祖边(回边):由一个节点指向前面已经遍历过的祖先节点的边。
  • 横叉边:指向了一个访问过但不是当前节点的祖先的边。
  • 前向边:指向了目前未遍历到的节点,但以后会遍历到的节点的边。

例如,下图即为一张图 \(G\)

不难看出,dfs 生成树长这样:

对比一下,如下:

黑边为树边,是正常深搜而来的。

红边即为返祖边,因为它指向了当前节点 \(7\) 的祖先。

蓝边即为横叉边,因为它指向了当前生成树的另一个节点,但不是当前节点 \(9\) 的祖先。

绿边即为前向边,指向了还未加入生成树的节点。

Tarjan 算法

Tarjan 算法是用来求解 \(SCC\) 的著名算法,可以在线性时间复杂度完成统计 \(SCC\) 的任务。

思路

若节点 \(u\)\(SCC\) 在搜索树中访问到的第一个节点,那么 \(SCC\) 就肯定是一个以 \(u\) 为根节点的子树,我们称 \(u\) 为这个 \(SCC\) 的根。

Tarjan 算法基本思路为把每个 \(SCC\) 都看作搜索树的一个子树,将其节点一个个保存。

对于两个节点 \(u\)\(v\),若 \(u\)\(v\) 的祖先,且 \(v\) 有一条返祖边能指向 \(u\),则 \(u\)\(v\) 形成了环,属于一个 \(SCC\)。从 \(u\)\(v\) 一路上遇到的所有点也属于这一 \(SCC\) 中的点,边也为 \(SCC\) 中边。

步骤

每次遍历到一个节点 \(u\),需要统计一下信息:

  • dfn[u],即 \(u\) 的时间戳(第几个被访问到的)。
  • low[u]\(u\) 属于的那个 \(SCC\)dfn 最小的时间戳。

初始化时,dfn[u]=low[u]=++tottot 为时间戳。

既然 dfs 是一种递归的算法,不妨用栈来存节点信息。

每次搜到一个节点都将其入栈,有出度则沿着出度遍历。

上文说到,dfs 搜索会搜到 \(4\) 种边,那么我们该如何解决 \(4\) 种边呢?

  • 树边:正常搜
  • 返祖边:更新当前的 low
  • 横叉边:无视,没用
  • 前向边:无视,没用

每次搜完子树都需要更新 \(u\)low 值,若 low[u]==dfn[u],则 \(u\) 为这个 \(SCC\) 的根节点,因为没有比他时间戳更小的了(回溯完之后)。

例题:福州一中OJ P2110 求有向图的强连通分量

AC Code:

#include<bits/stdc++.h>
using namespace std;
const int MAXN=2e5+5,MAXM=8e5+5;
struct EDGE{
	int to,pre;
}edge[MAXM<<1];
int head[MAXN],cnt_edge,tot,t;
int n,m,op;
//链式前向星存图 
void add(int from,int to)
{
	edge[++cnt_edge].to=to;
	edge[cnt_edge].pre=head[from];
	head[from]=cnt_edge;
	return;
}
int dfn[MAXN],low[MAXN];
stack<int> st;
bool vis[MAXN];
int cnt_ans,cnt_t,maxn;
void dfs(int u)//目标是统计maxn 
{
	dfn[u]=low[u]=++tot;//时间戳和子树最小时间戳 
	st.push(u);
	vis[u]=true;
	for(int i=head[u];i;i=edge[i].pre)
	{
		if(!dfn[edge[i].to])
		{
			dfs(edge[i].to);
			low[u]=min(low[u],low[edge[i].to]);//更新 
		}
		else
			if(vis[edge[i].to])//返祖边,注意是vis,不是dfn(有可能是横叉边) 
				low[u]=min(low[u],dfn[edge[i].to]);
	}
	if(low[u]==dfn[u])//是SCC的根节点 
	{
		cnt_t=0;//统计SCC节点个数 
		do{//记得是先做在判断 
			vis[t=st.top()]=false;//比u后入栈的都是SCC的子节点 
			st.pop();
			cnt_t++;
		}while(u!=t);
		maxn=max(maxn,cnt_t);
	}
	return;
}
void dfs2(int u)//与dfs大同小异,目标是计算有多少个强连通子图 
{
	dfn[u]=low[u]=++tot;
	st.push(u);
	vis[u]=true;
	for(int i=head[u];i;i=edge[i].pre)
	{
		if(!dfn[edge[i].to])
		{
			dfs2(edge[i].to);
			low[u]=min(low[u],low[edge[i].to]);
		}
		else
			if(vis[edge[i].to])
				low[u]=min(low[u],dfn[edge[i].to]);
	}
	if(low[u]==dfn[u])
	{
		cnt_t=0;
		do{
			vis[t=st.top()]=false;
			st.pop();
			cnt_t++;
		}while(u!=t);
		if(cnt_t==maxn)
			cnt_ans++;
	}
	return;
}
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&op);
		while(op--)
		{
			scanf("%d",&t);
			add(i,t);
		}
	}
	for(int i=1;i<=n;i++)
		if(!dfn[i])
			dfs(i);
	//初始化 
	while(!st.empty())
		st.pop();
	for(int i=1;i<=n;i++)
	{
		dfn[i]=0;
		low[i]=0;
		vis[i]=false;
	}
	//初始化 
	for(int i=1;i<=n;i++)
		if(!dfn[i])
			dfs2(i);
	printf("%d %d\n",maxn,cnt_ans);
	return 0;
}
posted @ 2024-07-26 19:17  Atserckcn  阅读(733)  评论(0)    收藏  举报