锚框 anchor box

博客地址:https://www.cnblogs.com/zylyehuo/

参考 《动手学深度学习》第二版

代码总览

# 锚框
%matplotlib inline
import torch
from d2l import torch as d2l
torch.set_printoptions(2)  # 精简输出精度

image

def multibox_prior(data, sizes, ratios):
    """生成以每个像素为中心具有不同形状的锚框"""
    in_height, in_width = data.shape[-2:]
    device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
    boxes_per_pixel = (num_sizes + num_ratios - 1)
    size_tensor = torch.tensor(sizes, device=device)
    ratio_tensor = torch.tensor(ratios, device=device)

    # 为了将锚点移动到像素的中心,需要设置偏移量。
    # 因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
    offset_h, offset_w = 0.5, 0.5
    steps_h = 1.0 / in_height  # 在y轴上缩放步长
    steps_w = 1.0 / in_width  # 在x轴上缩放步长

    # 生成锚框的所有中心点
    center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
    center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
    shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')
    shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)

    # 生成“boxes_per_pixel”个高和宽,
    # 之后用于创建锚框的四角坐标(xmin,xmax,ymin,ymax)
    w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
                   sizes[0] * torch.sqrt(ratio_tensor[1:])))\
                   * in_height / in_width  # 处理矩形输入
    h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
                   sizes[0] / torch.sqrt(ratio_tensor[1:])))
    # 除以2来获得半高和半宽
    anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
                                        in_height * in_width, 1) / 2

    # 每个中心点都将有“boxes_per_pixel”个锚框,
    # 所以生成含所有锚框中心的网格,重复了“boxes_per_pixel”次
    out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
                dim=1).repeat_interleave(boxes_per_pixel, dim=0)
    output = out_grid + anchor_manipulations
    return output.unsqueeze(0)
# 返回的锚框变量Y的形状是(批量大小,锚框的数量,4)
img = d2l.plt.imread('./assets/catdog.jpg')
h, w = img.shape[:2]
print(h, w)

image

X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape

image

# 访问以(250,250)为中心的第一个锚框
boxes = Y.reshape(h, w, 5, 4)
boxes[250, 250, 0, :]

image

# 显示以图像中以某个像素为中心的所有锚框
def show_bboxes(axes, bboxes, labels=None, colors=None):
    """显示所有边界框"""
    def _make_list(obj, default_values=None):
        if obj is None:
            obj = default_values
        elif not isinstance(obj, (list, tuple)):
            obj = [obj]
        return obj

    labels = _make_list(labels)
    colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
    for i, bbox in enumerate(bboxes):
        color = colors[i % len(colors)]
        rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)
        axes.add_patch(rect)
        if labels and len(labels) > i:
            text_color = 'k' if color == 'w' else 'w'
            axes.text(rect.xy[0], rect.xy[1], labels[i],
                      va='center', ha='center', fontsize=9, color=text_color,
                      bbox=dict(facecolor=color, lw=0))
# 以(250,250)为中心的锚框
d2l.set_figsize()
bbox_scale = torch.tensor((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,
            ['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
             's=0.75, r=0.5'])

image

# 交并比(IoU)
def box_iou(boxes1, boxes2):
    """计算两个锚框或边界框列表中成对的交并比"""
    box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
                              (boxes[:, 3] - boxes[:, 1]))
    # boxes1,boxes2,areas1,areas2的形状:
    # boxes1:(boxes1的数量,4),
    # boxes2:(boxes2的数量,4),
    # areas1:(boxes1的数量,),
    # areas2:(boxes2的数量,)
    areas1 = box_area(boxes1)
    areas2 = box_area(boxes2)
    # inter_upperlefts,inter_lowerrights,inters的形状:
    # (boxes1的数量,boxes2的数量,2)
    inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
    inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
    inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
    # inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
    inter_areas = inters[:, :, 0] * inters[:, :, 1]
    union_areas = areas1[:, None] + areas2 - inter_areas
    return inter_areas / union_areas
# 将真实边界框分配给锚框
def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
    """将最接近的真实边界框分配给锚框"""
    num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]
    # 位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoU
    jaccard = box_iou(anchors, ground_truth)
    # 对于每个锚框,分配的真实边界框的张量
    anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,
                                  device=device)
    # 根据阈值,决定是否分配真实边界框
    max_ious, indices = torch.max(jaccard, dim=1)
    anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)
    box_j = indices[max_ious >= iou_threshold]
    anchors_bbox_map[anc_i] = box_j
    col_discard = torch.full((num_anchors,), -1)
    row_discard = torch.full((num_gt_boxes,), -1)
    for _ in range(num_gt_boxes):
        max_idx = torch.argmax(jaccard)
        box_idx = (max_idx % num_gt_boxes).long()
        anc_idx = (max_idx / num_gt_boxes).long()
        anchors_bbox_map[anc_idx] = box_idx
        jaccard[:, box_idx] = col_discard
        jaccard[anc_idx, :] = row_discard
    return anchors_bbox_map
# 标记类别和偏移量
def offset_boxes(anchors, assigned_bb, eps=1e-6):
    """对锚框偏移量的转换"""
    c_anc = d2l.box_corner_to_center(anchors)
    c_assigned_bb = d2l.box_corner_to_center(assigned_bb)
    offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
    offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])
    offset = torch.cat([offset_xy, offset_wh], axis=1)
    return offset
def multibox_target(anchors, labels):
    """使用真实边界框标记锚框"""
    batch_size, anchors = labels.shape[0], anchors.squeeze(0)
    batch_offset, batch_mask, batch_class_labels = [], [], []
    device, num_anchors = anchors.device, anchors.shape[0]
    for i in range(batch_size):
        label = labels[i, :, :]
        anchors_bbox_map = assign_anchor_to_bbox(
            label[:, 1:], anchors, device)
        bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(
            1, 4)
        # 将类标签和分配的边界框坐标初始化为零
        class_labels = torch.zeros(num_anchors, dtype=torch.long,
                                   device=device)
        assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,
                                  device=device)
        # 使用真实边界框来标记锚框的类别。
        # 如果一个锚框没有被分配,标记其为背景(值为零)
        indices_true = torch.nonzero(anchors_bbox_map >= 0)
        bb_idx = anchors_bbox_map[indices_true]
        class_labels[indices_true] = label[bb_idx, 0].long() + 1
        assigned_bb[indices_true] = label[bb_idx, 1:]
        # 偏移量转换
        offset = offset_boxes(anchors, assigned_bb) * bbox_mask
        batch_offset.append(offset.reshape(-1))
        batch_mask.append(bbox_mask.reshape(-1))
        batch_class_labels.append(class_labels)
    bbox_offset = torch.stack(batch_offset)
    bbox_mask = torch.stack(batch_mask)
    class_labels = torch.stack(batch_class_labels)
    return (bbox_offset, bbox_mask, class_labels)
# 一个例子
ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],
                         [1, 0.55, 0.2, 0.9, 0.88]])
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
                    [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
                    [0.57, 0.3, 0.92, 0.9]])

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);

image

# 根据狗和猫的真实边界框,标注这些锚框的分类和偏移量
labels = multibox_target(anchors.unsqueeze(dim=0),
                         ground_truth.unsqueeze(dim=0))
labels[2]

image

labels[1]

image

labels[0]

image

# 应用逆偏移变换来返回预测的边界框坐标
def offset_inverse(anchors, offset_preds):
    """根据带有预测偏移量的锚框来预测边界框"""
    anc = d2l.box_corner_to_center(anchors)
    pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2]
    pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * anc[:, 2:]
    pred_bbox = torch.cat((pred_bbox_xy, pred_bbox_wh), axis=1)
    predicted_bbox = d2l.box_center_to_corner(pred_bbox)
    return predicted_bbox
# 以下nms函数按降序对置信度进行排序并返回其索引
def nms(boxes, scores, iou_threshold):
    """对预测边界框的置信度进行排序"""
    B = torch.argsort(scores, dim=-1, descending=True)
    keep = []  # 保留预测边界框的指标
    while B.numel() > 0:
        i = B[0]
        keep.append(i)
        if B.numel() == 1: break
        iou = box_iou(boxes[i, :].reshape(-1, 4),
                      boxes[B[1:], :].reshape(-1, 4)).reshape(-1)
        inds = torch.nonzero(iou <= iou_threshold).reshape(-1)
        B = B[inds + 1]
    return torch.tensor(keep, device=boxes.device)
# 将非极大值抑制应用于预测边界框
def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5,
                       pos_threshold=0.009999999):
    """使用非极大值抑制来预测边界框"""
    device, batch_size = cls_probs.device, cls_probs.shape[0]
    anchors = anchors.squeeze(0)
    num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2]
    out = []
    for i in range(batch_size):
        cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4)
        conf, class_id = torch.max(cls_prob[1:], 0)
        predicted_bb = offset_inverse(anchors, offset_pred)
        keep = nms(predicted_bb, conf, nms_threshold)

        # 找到所有的non_keep索引,并将类设置为背景
        all_idx = torch.arange(num_anchors, dtype=torch.long, device=device)
        combined = torch.cat((keep, all_idx))
        uniques, counts = combined.unique(return_counts=True)
        non_keep = uniques[counts == 1]
        all_id_sorted = torch.cat((keep, non_keep))
        class_id[non_keep] = -1
        class_id = class_id[all_id_sorted]
        conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted]
        # pos_threshold是一个用于非背景预测的阈值
        below_min_idx = (conf < pos_threshold)
        class_id[below_min_idx] = -1
        conf[below_min_idx] = 1 - conf[below_min_idx]
        pred_info = torch.cat((class_id.unsqueeze(1),
                               conf.unsqueeze(1),
                               predicted_bb), dim=1)
        out.append(pred_info)
    return torch.stack(out)
# 将上述算法应用到一个带有四个锚框的具体示例中
anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],
                      [0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])
offset_preds = torch.tensor([0] * anchors.numel())
cls_probs = torch.tensor([[0] * 4,  # 背景的预测概率
                      [0.9, 0.8, 0.7, 0.1],  # 狗的预测概率
                      [0.1, 0.2, 0.3, 0.9]])  # 猫的预测概率
# 在图像上绘制这些预测边界框和置信度
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,
            ['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])

image

# 调用multibox_detection函数来执行非极大值抑制,其中阈值设置为0.5
output = multibox_detection(cls_probs.unsqueeze(dim=0),
                            offset_preds.unsqueeze(dim=0),
                            anchors.unsqueeze(dim=0),
                            nms_threshold=0.5)
output

image

# 删除-1类别(背景)的预测边界框后,我们可以输出由非极大值抑制保存的最终预测边界框
fig = d2l.plt.imshow(img)
for i in output[0].detach().numpy():
    if i[0] == -1:
        continue
    label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
    show_bboxes(fig.axes, [torch.tensor(i[2:]) * bbox_scale], label)

image

代码解释

从头到尾用"快递站管理系统"的比喻方式,完整解释每一行代码的功能和意义。

1. 导入库 - 准备工具包

import torch  # 📦 主工具箱:搬运工(张量操作)
from d21 import torch as d21  # 📦 专用工具包:快递站定制工具(边界框转换等)

image

torch.set_printoptions(2)  # 📏 设置测量精度:小数点后2位

image

2. 锚框生成 - 布置仓库货架

def multisourceplot(data, sizes, ratios):
    # 📏 测量仓库尺寸
    in_height, in_width = data.shape[-2:]  # 获取仓库的长宽
    
    # 🧰 准备工具
    device = data.device  # 确定使用哪种搬运车(CPU/GPU)
    num_sizes, num_ratios = len(sizes), len(ratios)  # 清点盒子类型
    
    # 📐 计算每个位置放几个盒子
    boxes_per_pixel = (num_sizes + num_ratios - 1)  # 每位置放4个盒子
    
    # 📦 准备盒子模板
    size_tensor = torch.tensor(sizes, device=device)  # 小/中/大三种盒子
    ratio_tensor = torch.tensor(ratios, device=device)  # 方形/长方形模板
    
    # 📍 确定每个格子的中心点
    offset_h, offset_w = 0.5, 0.5  # 从格子角落往中心走0.5步
    steps_h = 1.0 / in_height  # 纵向每步距离
    steps_w = 1.0 / in_width   # 横向每步距离
    
    # 🗺️ 创建坐标网格
    center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
    center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
    shift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')
    shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)  # 压平网格
    
    # 📏 计算每种盒子的实际尺寸
    # 第一类:固定形状,不同大小
    w1 = size_tensor * torch.sqrt(ratio_tensor[0])
    h1 = size_tensor / torch.sqrt(ratio_tensor[0])
    
    # 第二类:固定大小,不同形状
    w2 = sizes[0] * torch.sqrt(ratio_tensor[1:])
    h2 = sizes[0] / torch.sqrt(ratio_tensor[1:])
    
    # 📦 合并所有盒子尺寸
    w = torch.cat((w1, w2))
    h = torch.cat((h1, h2))
    
    # 🧩 组装盒子位置偏移量
    anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
        in_height * in_width, 1) / 2  # 计算每个盒子四角偏移
    
    # 🗺️ 为每个位置分配中心点
    out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y], 
                          dim=1).repeat_interleave(boxes_per_pixel, dim=0)
    
    # 📌 最终确定每个盒子位置
    output = out_grid + anchor_manipulations  # 中心点 + 偏移量
    return output.unsqueeze(0)  # 📄 返回货架布置图(添加批次维度)

image

3. IoU计算 - 测量格子重叠率

def box_iou(boxes1, boxes2):
    # 📏 定义量具:计算格子面积
    box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) * 
                             (boxes[:, 3] - boxes[:, 1]))
    
    # 📐 测量两组格子各自面积
    areas1 = box_area(boxes1)  # 第一组格子面积
    areas2 = box_area(boxes2)  # 第二组格子面积
    
    # 🔍 计算重叠区域
    # 左上角取较大值(更靠右下的左上角)
    inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
    # 右下角取较小值(更靠左上的右下角)
    inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
    # 计算重叠区域尺寸(负数取0)
    inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
    
    # 📏 计算重叠面积
    inter_areas = inters[:, :, 0] * inters[:, :, 1]
    # 📐 计算总面积
    union_areas = areas1[:, None] + areas2 - inter_areas
    
    # ➗ 返回重叠比例
    return inter_areas / union_areas

image

4. 锚框分配 - 给包裹分配存储格

def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
    # 📦 清点资源
    num_anchors = anchors.shape[0]  # 空盒子数量
    num_gt = ground_truth.shape[0]   # 包裹数量
    
    # 📊 测量每个空盒与包裹的匹配度
    jaccard = box_iou(anchors, ground_truth)  # 计算IoU矩阵
    
    # 🏷️ 初始化分配表(-1表示未分配)
    anchor_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long, device=device)
    
    # ✅ 第一轮分配:高匹配度直接分配
    max_iou, indices = torch.max(jaccard, dim=1)  # 每个盒子找最佳匹配
    anc_i = torch.nonzero(max_iou >= iou_threshold).reshape(-1)  # 找出匹配度高的盒子
    box_j = indices[anc_i]  # 对应的包裹编号
    anchor_bbox_map[anc_i] = box_j  # 登记分配关系
    
    # 🔄 第二轮分配:确保每个包裹都有盒子
    col_discard = torch.full((num_anchors,), -1)  # 列作废标记
    row_discard = torch.full((num_gt,), -1)       # 行作废标记
    
    for _ in range(num_gt):  # 遍历每个包裹
        max_idx = torch.argmax(jaccard)  # 找全局最佳匹配
        box_idx = (max_idx % num_gt).long()  # 包裹编号
        anc_idx = (max_idx // num_gt).long()  # 盒子编号
        
        anchor_bbox_map[anc_idx] = box_idx  # 分配盒子
        
        # 🚫 标记已分配的包裹和盒子
        jaccard[:, box_idx] = col_discard  # 该包裹列作废
        jaccard[anc_idx, :] = row_discard  # 该盒子行作废
        
    return anchor_bbox_map  # 📄 返回分配表

image

5. 偏移计算 - 记录格子调整量

def offset_boxes(anchors, assigned_bb, eps=1e-6):
    # 🔄 转换坐标格式:从四角→中心+尺寸
    c_anc = d21.box_corner_to_center(anchors)  # 格子当前尺寸
    c_assigned = d21.box_corner_to_center(assigned_bb)  # 包裹实际尺寸
    
    # 📏 计算中心点偏移(带缩放因子)
    offset_xy = 10 * (c_assigned[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
    
    # 📏 计算尺寸缩放量(对数形式更稳定)
    offset_wh = 5 * torch.log(eps + c_assigned[:, 2:] / c_anc[:, 2:])
    
    return torch.cat([offset_xy, offset_wh], axis=1)  # 📄 返回调整量表

image

6. 训练标签生成 - 创建员工培训手册

def multibox_target(anchors, labels):
    # 📦 初始化培训资料
    batch_size = labels.shape[0]  # 培训包裹批次大小
    anchors = anchors.squeeze(0)  # 移除批次维度
    batch_offset, batch_mask, batch_class_labels = [], [], []  # 三个培训模块
    
    # 🔄 处理每个培训包裹
    for i in range(batch_size):
        label = labels[i, :, :]  # 当前包裹信息
        
        # 🏷️ 分配格子
        anchor_bbox_map = assign_anchor_to_bbox(label[:, 1:], anchors, device)
        
        # 🎭 创建格子使用标记
        bbox_mask = ((anchor_bbox_map >= 0).float().unsqueeze(-1)).repeat(1, 4)
        
        # 🏷️ 初始化标签
        class_labels = torch.zeros(anchors.shape[0], dtype=torch.long, device=device)
        assigned_bb = torch.zeros((anchors.shape[0], 4), dtype=torch.float32, device=device)
        
        # ✅ 标记有包裹的格子
        indices_true = torch.nonzero(anchor_bbox_map >= 0).flatten()
        bb_idx = anchor_bbox_map[indices_true]
        class_labels[indices_true] = label[bb_idx, 0].long() + 1  # 类别+1(0留给空)
        assigned_bb[indices_true] = label[bb_idx, 1:]  # 记录包裹位置
        
        # 📏 计算格子调整量
        offset = offset_boxes(anchors, assigned_bb) * bbox_mask
        
        # 📚 收集培训资料
        batch_offset.append(offset.reshape(-1))
        batch_mask.append(bbox_mask.reshape(-1))
        batch_class_labels.append(class_labels)
    
    # 📦 打包培训手册
    return (torch.stack(batch_offset), 
            torch.stack(batch_mask), 
            torch.stack(batch_class_labels))

image

7. 预测解码 - 应用调整建议

def offset_inverse(anchors, offset_preds):
    # 🔄 转换坐标格式
    c_anc = d21.box_corner_to_center(anchors)
    
    # 🔧 应用中心点调整
    pred_bbox_xy = (offset_preds[:, :2] * c_anc[:, 2:] / 10 + c_anc[:, :2]
    
    # 🔧 应用尺寸调整
    pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * c_anc[:, 2:]
    
    # 📦 重组预测框
    pred_bbox = torch.cat([pred_bbox_xy, pred_bbox_wh], axis=1)
    
    # 🔄 转换回四角坐标
    return d21.box_center_to_corner(pred_bbox)

image

8. NMS - 去重检查

def nms(boxes, scores, iou_threshold):
    # 📊 按可信度排序
    B = torch.argsort(scores, dim=-1, descending=True)
    keep = []  # 保留列表
    
    # 🔍 遍历所有盒子
    while B.numel() > 0:
        i = B[0]  # 当前最可信的盒子
        keep.append(i)  # 加入保留列表
        
        if B.numel() == 1:  # 只剩一个盒子时退出
            break
        
        # 📏 计算与其他盒子的重叠率
        iou = box_iou(boxes[i, :].reshape(-1, 4), 
                     boxes[B[1:], :].reshape(-1, 4)).reshape(-1)
        
        # 🚫 保留重叠率低的盒子
        inds = torch.nonzero(iou <= iou_threshold).reshape(-1)
        B = B[inds + 1]  # 更新待处理列表
    
    return torch.tensor(keep, device=boxes.device)  # 📄 返回保留盒子的索引

image

9. 检测后处理 - 生成最终报告

def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5, pos_threshold=0.01):
    # 📦 准备报告模板
    device = cls_probs.device
    batch_size = cls_probs.shape[0]
    anchors = anchors.squeeze(0)
    out = []  # 最终报告列表
    
    # 🔄 处理每个仓库区域
    for i in range(batch_size):
        # 📊 获取员工扫描结果
        cls_prob = cls_probs[i]  # 每个格子的包裹概率
        offset_pred = offset_preds[i].reshape(-1, 4)  # 尺寸调整建议
        
        # 🎯 找出可能含包裹的格子
        conf, class_id = torch.max(cls_prob[1:], 0)  # 跳过背景类别
        
        # 🔧 应用尺寸调整
        predicted_bb = offset_inverse(anchors, offset_pred)
        
        # 🚫 去重处理
        keep = nms(predicted_bb, conf, nms_threshold)
        
        # 📋 重组所有格子信息
        all_idx = torch.arange(anchors.shape[0], dtype=torch.long, device=device)
        combined = torch.cat([keep, all_idx])
        uniques, counts = combined.unique(return_counts=True)
        non_keep = uniques[counts == 1]  # 找出NMS未保留的格子
        
        # 🏷️ 标记空格子
        class_id[non_keep] = -1  # -1表示空格子
        
        # 📊 排序格子信息
        all_id_sorted = torch.cat([keep, non_keep])
        conf = conf[all_id_sorted]
        predicted_bb = predicted_bb[all_id_sorted]
        
        # 🚫 过滤低可信度格子
        below_min_idx = (conf < pos_threshold)
        class_id[below_min_idx] = -1  # 标记为空
        conf[below_min_idx] = 1 - conf[below_min_idx]  # 计算背景概率
        
        # 📝 生成区域报告
        pred_info = torch.cat((class_id.unsqueeze(1),
                              conf.unsqueeze(1),
                              predicted_bb), dim=1)
        out.append(pred_info)
    
    return torch.stack(out)  # 📑 返回最终报告

image

全流程总结

image

posted @ 2025-07-31 15:09  zylyehuo  阅读(29)  评论(0)    收藏  举报