摘要:
在使用卷积神经网络时,我们也总结了一些训练技巧,下面就来介绍如何对卷积核进行优化,以及多通道卷积技术的使用。 一 优化卷积核 在实际的卷积训练中,为了加快速度,常常把卷积核裁开。比如一个3x3的卷积核,可以裁成一个3x1和1x3的卷积核(通过矩阵乘法得知),分别对原有输入做卷积运算,这样可以大大提升 阅读全文
posted @ 2018-05-05 18:16
大奥特曼打小怪兽
阅读(6158)
评论(1)
推荐(2)
摘要:
这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的很多函数的高级封装,使用这个高级库来开发程序将会提高效率。 我们改写第十三节的程序,卷积函数我们使用tf.contrib.layers.conv2d(),池化函数使用tf.contrib.layers.max_pool2d()和 阅读全文
posted @ 2018-05-05 16:36
大奥特曼打小怪兽
阅读(18714)
评论(0)
推荐(0)
摘要:
在第十三节,我们已经介绍了使用带有全局平均池化层的CNN对CIFAR10数据集分类,在学习了反卷积神经网络之后我们把第十三节那个程序里的卷积层可视化出来。 一 替换掉tf.nn.max_pool()函数 这里不再使用自己定义的max_pool_2x2函数,改成新加入的带有mask返回值得max_po 阅读全文
posted @ 2018-05-05 11:45
大奥特曼打小怪兽
阅读(3389)
评论(1)
推荐(1)

浙公网安备 33010602011771号